A research team, jointly led by Professor Gun-Tae Kim and Professor Jun-Hee Lee in the School of Energy and Chemical Engineering at South-Korea's UNIST has succeeded in developing high-performance perovskite oxide catalysts using late transition metal oxide materials. In the process, the team discovered the reason behind the improved performance of both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), which has been explained by the change in the oxidation state of the transition metal caused by the increase in oxygen vacancies.
Perovskite oxide catalysts are composed of lanthanide, transition metal and oxygen. Owing to the excellent electrical conductivity and bifunctional ORR/OER activity, these catalysts have been considered to be an attractive candidate for metal-air batteries or fuel cells, in which opposite reactions, such as charging and discharging occur steadily. However, due to the high cost and low stability of noble metal catalysts, the development of alternatives is strongly desired.
"It has been known that the ORR activity of perovskite oxides are caused when oxygen vacancies are formed, but the newly developed catalysts exhibit good bifunctionality for both ORR and OER," says Professor Lee. "The improved performance of both ORR and OER is explained by the change in the oxidation state of the transition metal caused by the increase in oxygen vacancies."
"Our results suggest that late transition metal oxides can be utilized as efficient bifunctional catalysts by the introduction of oxygen vacancies," says Professor Kim. "We expect that this approach can accelerate the discovery and design of highly efficient bifunctional catalysts."