Stability - Page 3

Researchers use copper thiocyanate to develop efficient and stable perovskite-silicon tandem solar cells

Researchers from Zhejiang University, Soochow University, King Abdullah University of Science and Technology (KAUST), The Hong Kong Polytechnic University and Suzhou Maxwell Technologies have addressed common challenges related to hole transport layers that are commonly used for the perovskite top cells, such as defects, non-conformal deposition or de-wetting of the overlying perovskite on the textured silicon bottom cells.

The team decided to develop a strategy based on co-deposition of copper(I) thiocyanate and perovskite, where effective perovskite grain boundary passivation and efficient hole collection are simultaneously achieved by the embedded copper(I) thiocyanate, which creates local hole-collecting contacts. Fabricated monolithic perovskite/silicon tandem devices achieved a certified power conversion efficiency of 31.46% for 1 cm2 area devices. 

Read the full story Posted: Nov 11,2024

New method can reduce thermal degradation of PSCs during vacuum lamination

Current photovoltaic (PV) panels typically contain interconnected solar cells that are vacuum laminated with a polymer encapsulant between two pieces of glass or glass with a polymer backsheet. This packaging approach is common in conventional photovoltaic technologies such as silicon and thin-film solar modules, contributing to thermal management, mechanical reinforcement, and environmental protection to enable long lifetimes. Commercial vacuum lamination processes typically occur at 150 °C to ensure cross-linking and/or glass bonding of the encapsulant to the glass and PV cells. Perovskite solar cells (PSCs) are known to degrade under thermal stresses, especially at temperatures above 100 °C.

Researchers from NREL and The Dow Chemical Company have examined degradation modes during lamination and developed internal diffusion barriers within the PSC to withstand the harsh thermal conditions of vacuum lamination. 

Read the full story Posted: Nov 10,2024

New passivation technique improves the stability and efficiency of inverted perovskite solar cells using guanidine iodide

Researchers from China's Tianshui Normal University have reported a grain regeneration and passivation approach that can decrease the recombination loss of the perovskite layer/charge transfer layer interface and the grain border. 

Device manufacturing process. Image from: Scientific Reports

The team relies on guanidine iodide (GAI) treatment of perovskite films for this new approach. Unlike most methods that use GAI for post-treatment of the perovskite layer or add GAI into the perovskite precursor solution, this work uses GAI for pre-treatment before spin coating the perovskite layer. It can effectively passivate surface defects and increase the grain size of perovskite films by controlling the crystallization process. 

Read the full story Posted: Nov 03,2024

TCI launches Phenylethylamine Hydroiodides materials to increase the stability of perovskite solar panels

Tokyo Chemical Industry (TCI), a global supplier of laboratory chemicals and specialty materials, is now offering Phenylethylamine Hydroiodides materials, used for surface treatment of perovskite layers in solar panels. These materials improve the stability of the solar panels.

Research has shown that by applying the Phenylethylamine Hydroiodides materials, one can expect improved stability of over 90%. In one research, the 1,2-Benzenediethanamine Dihydroiodide was applied to a perovskite PV device (FTO/TiO2/SnO2/perovskite/Amine Iodide/Spiro-OMeTAD/Au), and achieved an increase in stability of over 90% after 1,100 hours. See here for more info.

Read the full story Posted: Oct 21,2024

Novel 0D strategy offers a promising path toward more stable PSCs

While formamidinium lead triiodide (FAPbI3) perovskite can be used to create highly efficient perovskite solar cells (PSCs), the thermodynamically unstable α-phase poses a challenge to device long-term stability. Thermal annealing is essential for producing high-quality polycrystalline films that stabilize the α-FAPbI3 phase, but it also induces partial decomposition of FAPbI3 into PbI2, leading to extra phase instability of FAPbI3 films.

Researchers from the University of Science and Technology of China, Chinese Academy of Sciences, NingboTech University and Nankai University have developed a zero dimensional (0D) perovskite-decorated strategy to enhance the intrinsic stability of FAPbI3 film by stabilization of the initially formed α-FAPbI3 phase. 

Read the full story Posted: Oct 19,2024

Perovskite solar cells gain improved stability through atomic layer deposition of tin oxide

Researchers from City University of Hong Kong, National Renewable Energy Laboratory (NREL) and Imperial College London have improved the long-term stability of perovskite solar cells with an atomic-layer deposition (ALD) method that replaces the fullerene electron transport layer with tin oxide. 

Professor Zhu Zonglong (left) and Dr Gao Danpeng of City University of Hong Kong hold their innovative solar cells. Image credit: Eurekalert

The team started by depositing the perovskite and the hole-transporter layer in a single step. Then, they used ALD to create an oxygen-deficient tin oxide layer to reduce the band offset to a thicker, overgrown layer of normal tin oxide. Solar cells had a power conversion efficiency of more than 25%, and they retained more than 95% of efficiency after 2000 hours of maximum power point operations at 65°C. 

Read the full story Posted: Oct 17,2024

Researchers develop unique HTMs to enhance device stability of PSCs

Researchers from Thailand's Mahidol University, Rajamangala University of Technology Thanyaburi and Synchrotron Light Research Institute have presented two novel air-stable hole transporting materials (HTMs) based on a spiro[fluorene-9,9′-xanthene] (SFX) core functionalized with N-methylcarbazole (XC2-M) and N-hexylcarbazole (XC2-H) rings. 

These HTMs were synthesized via a straightforward, three-step process with good overall yields (∼40%) and low production costs. To further reduce device cost, carbon back electrodes were employed. The resulting PSCs, with a structure of FTO/SnO2/Cs0.05FA0.73MA0.22Pb(I0.77Br0.23)3/HTM/C, achieved power conversion efficiencies (PCEs) of 13.5% (XC2-M) and 10.2% (XC2-H), comparable to the reference spiro-OMeTAD device (12.2%). 

Read the full story Posted: Oct 16,2024

Passivators based on lead carbanion yield inverted PSCs with 25.16% efficiency

Researchers from NingboTech University, Hunan Institute of Engineering, Hangna Nanofabrication Equipment Co. and University Malaysia Sabah have developed an inverted perovskite solar cell with an interface passivator based on lead carbanion (Pb–C), that reportedly achieved the highest open-circuit voltage ever recorded for an inverted perovskite PV device. The lead carbanion layer was responsible for reducing defects at the interface between the perovskite layer and the electron transport layer.

Inverted perovskite cells, or “p-i-n” cells, have the hole-selective contact p at the bottom of intrinsic perovskite layer i with electron transport layer n at the top. Conventional halide perovskite cells have the same structure but reversed – a “n-i-p” layout. In a n-i-p architecture, the solar cell is illuminated through the electron-transport layer (ETL) side; in the p-i-n structure, it is illuminated through the hole‐transport layer (HTL) surface. Inverted perovskite solar cells are known for their impressive stability but have been held back by relatively low efficiencies. This issue mainly arises at the point where the perovskite layer meets the electron transport layer, causing energy loss instead of being converted into useful power, primarily caused by carrier recombination, especially at the interface between perovskite and the electron transport layer.

Read the full story Posted: Oct 08,2024

New ligand exchange process enables improved perovskite quantum dots for efficient and stable solar cells

Researchers from Korea's Daegu Gyeongbuk Institute of Science and Technology (DGIST), Gyeongsang National University (GNU) and Kookmin University have developed a method to improve both the performance and the stability of solar cells using perovskite quantum dots. They developed longer-lasting solar cells by addressing the issue of distortions on the surface of quantum dots, which deteriorate the performance of solar cells.

A schematic diagram of bilateral ligand bonding on the surface of perovskite quantum dots. Image credit: Chemical Engineering Journal

Perovskite quantum dots can have excellent light-to-electricity conversion capabilities and are easy to mass-produce. However, according to the research team, in order to utilize them in solar cells, the ligands attached to the quantum dot surface must be replaced. This process often leads to distortions of the quantum dot surface, resembling crumpled paper, which results in decreased performance and shorter lifespans for the solar cells. To address this issue, the team adopted short ligands that securely hold the quantum dots from both sides, effectively uncrumpling the distorted surface. The ligands help restore the distorted lattice structure, smoothing the crumpled surface of the quantum dots. This significantly reduces surface defects, enabling the solar cells to operate more efficiently and extending their lifespan. Consequently, the power conversion efficiency of the solar cells increased from 13.6% to 15.3%, demonstrating stability by maintaining 83% of their performance for 15 days.

Read the full story Posted: Oct 04,2024

Researchers enable efficient and stable perovskite solar cells via in situ energetics modulation

In contrast to conventional (n–i–p) PSCs, inverted (p–i–n) PSCs offer enhanced stability and integrability with tandem solar cell architectures, which have garnered increasing interest. However, p–i–n cells tend to suffer from energy level misalignment with transport layers, imbalanced transport of photo-generated electrons and holes, and significant defects with the perovskite films.

Recently, researchers from King Abdullah University of Science and Technology (KAUST), Newcastle University, National Renewable Energy Laboratory (NREL) and Saudi Aramco Research and Development Center developed a nonionic n-type molecule (tris(2,4,6-trimethyl-3-(pyridin-3-yl)phenyl)borane (3TPYMB) that, through hydrogen bonding and Lewis acid–base reactions with perovskite surfaces or grain boundaries, enables in situ modulation of perovskite energetics, effectively mitigating the key challenges of p–i–n perovskite solar cells (PSCs). 

Read the full story Posted: Oct 03,2024