Researchers develop unique HTMs to enhance device stability of PSCs

Researchers from Thailand's Mahidol University, Rajamangala University of Technology Thanyaburi and Synchrotron Light Research Institute have presented two novel air-stable hole transporting materials (HTMs) based on a spiro[fluorene-9,9′-xanthene] (SFX) core functionalized with N-methylcarbazole (XC2-M) and N-hexylcarbazole (XC2-H) rings. 

These HTMs were synthesized via a straightforward, three-step process with good overall yields (∼40%) and low production costs. To further reduce device cost, carbon back electrodes were employed. The resulting PSCs, with a structure of FTO/SnO2/Cs0.05FA0.73MA0.22Pb(I0.77Br0.23)3/HTM/C, achieved power conversion efficiencies (PCEs) of 13.5% (XC2-M) and 10.2% (XC2-H), comparable to the reference spiro-OMeTAD device (12.2%). 

 

The choice of alkyl chain on the HTM significantly impacts film morphology and device stability. The XC2-H device exhibited exceptional long-term stability, retaining approximately 90% of its initial PCE after 720 h of storage in 30–40% humidity air without encapsulation. 

This surpasses the performance of both the spiro-OMeTAD (55% retention) and XC2-M (68% retention) devices. The superior stability of XC2-H is attributed to its highly hydrophobic nature and the formation of a compact, smooth film due to interdigitation of the hexyl chains.

The straightforward synthesis of XC2-H from commercially available materials offers a promising approach for large-scale PSC production.

Posted: Oct 16,2024 by Roni Peleg