Perovskite Solar - Page 47

Researchers simplify the process of manufacturing perovskite solar cells by coating multiple layers at once

Researchers at the National Renewable Energy Laboratory (NREL), City University of Hong Kong, École Polytechnique Fédérale de Lausanne (EPFL), University of Kentucky, University of Colorado, University of Toledo and Brown University have developed a concept  that simplifies the process of manufacturing perovskite solar cells, which could accelerate their path toward commercialization.

Perovskite solar cells are made by sequentially depositing various layers onto a conductive glass substrate, requiring multiple coatings to create the necessary full device structure. The new technique eliminates or combines some of those steps, thereby simplifying the manufacturing process, which could lead to lower manufacturing costs.

Read the full story Posted: Mar 24,2023

Researchers develop effective strategy for creating high-quality perovskite films with tunable orientation to simultaneously boost the efficiency and stability of PSCs

Researchers at Shaanxi Normal University in China have developed an organic-inorganic hybrid perovskite solar cell that uses 2D perovskite crystal as the template for 3D perovskite growth. In the recent study, the team developed a seed-mediated method to in situ grow a layer of 2D perovskite seed for epitaxial growth of 3D perovskite atop it, to construct a high-quality 2D/3D heterojunction. 

It was reportedly found that the epitaxial 3D perovskite film exhibited a preferred direction, which is different from traditional perovskites with a preferred orientation. The oriented perovskite film consists of large-sized grains with low defect density, long charge-carrier lifetime and good stability, resulting in efficient PSCs with a champion efficiency of 24.83%. 

Read the full story Posted: Mar 23,2023

New project by Dutch-German consortium to develop simplified tandem solar modules for European market

TNO, in cooperation with Dutch and German industrial partners, is advancing a perovskite/silicon tandem solar module suitable for early market introduction. 

FIT4Market, a four-year research project supported by the Netherlands Enterprise Agency (RVO), will help drive CO2 reduction through to 2030, supporting national climate objectives. It is also a step towards bringing PV production back to Europe and rebuilding a competitive PV supply chain.

Read the full story Posted: Mar 21,2023

UCLA and Midsummer develop perovskite-CIGS tandem solar cells with 24.9% efficiency

University of California, Los Angeles (UCLA) researchers have joined forces with Swedish building-integrated PV (BIPV) module manufacturer, Midsummer, on a project that has yielded a four-terminal (4T) tandem solar cell based on a top cell made of perovskite and a bottom cell relying on copper, indium, gallium and selenium (CIGS).

The joint project between Midsummer and Prof. Yang's lab at UCLA resulted in a four-terminal perovskite-CIGS tandem solar cell, based on a commercial CIGS solar cell,  that reached 24.9 percent efficiency. The solar cell was based on a perovskite top cell that has been optimized for integration with Midsummer’s CIGS cells that are utilized in their commercial suite of BIPV products.

Read the full story Posted: Mar 20,2023

Researchers advance slot-die coated perovskite solar cells and ink properties

Scientists from Germany’s Helmholtz-Zentrum Berlin (HZB) and HTW Berlin have examined how precursor inks influence the quality of perovskite thin films. The best cells were scaled up to minimodule size. The team showed that when slot-die coating the halide perovskite layers on large areas, ribbing effects may occur but can be prevented by adjusting the precursor ink's rheological properties.

Prof. Dr. Eva Unger's team at Helmholtz-Zentrum Berlin has extensive expertise in solution-based processing methods and is investigating options for upscaling. "Perovskite photovoltaics is the best solution-processable PV technology available," says Eva Unger, "but we are only just beginning to understand how the complex interaction of the solvent components affects the quality of the perovskite layers."

Read the full story Posted: Mar 19,2023

Researchers demonstrate breakthrough roll-to-roll printable perovskite solar cell

A team of scientists at Swansea University has used a combination of a low-temperature device structure and roll-to-roll-compatible solution formulations to make a fully roll-to-roll (R2R) printable device architecture overcoming interlayer incompatibilities and recombination losses.

A sample of the new fully roll-to-roll (R2R) coated device. Credit: Swansea University (from Techxplore)

This means that using slot die coating in a R2R process, the team from the SPECIFIC Innovation and Knowledge Center at Swansea University has established a way to create "fully printable" perovskite photovoltaics.

Read the full story Posted: Mar 18,2023

CEA-INES and Enel Green Power reach 26.5% efficiency for tandem perovskite-silicon solar cell

Researchers at France's National Solar Energy Institute (INES) – a division of the French Alternative Energies and Atomic Energy Commission (CEA) – and Italian renewables specialist Enel Green Power have reportedly developed a two-terminal tandem perovskite-silicon solar cell with a power conversion efficiency of 26.5%. 

The scientists said the new result improves on the 25.8% efficiency they achieved for the same kind of cell in December 2022. “The device with an active area of 9 cm² has an open-circuit voltage above 1,880 mV,” CEA-INES said, noting that the improvement on the device, which is based on a p-i-n configuration, was also due to “shading correction.” No additional technical details were disclosed.

Read the full story Posted: Mar 18,2023

Researchers develop strategy to reduce the formation of anions vacancy defects in halide perovskite solar cells

Researchers at China's Shaanxi Normal University and Chinese Academy of Sciences (CAS) have designed a novel strategy to reduce the formation of anions vacancy defects in halide perovskite solar cells. The team reported that the new approach results in higher efficiency and remarkable stability.

The new method, which they defined as 'a one-stone-for-two-birds' strategy, utilized a ligand known as 3-amidinopyridine (3AP) to pin anions in the device. Anions can control the nucleation and growth of the perovskite crystals and act as a passivating agent to improve the crystallinity, thus ensuring improved efficiency. The team says the 3AP molecules deposited on the perovskite layer are able to form strong chemical bonds with the cell's lead(II) iodide (Pb–I) interlayer and, as a consequence, create a sustainable pinning effect.

Read the full story Posted: Mar 14,2023

Ascent Solar Technologies repurposes its solar facility to advance perovskite solar commercialization

Ascent Solar Technologies, a U.S. manufacturer of lightweight, flexible and durable CIGS thin-film photovoltaic (PV) solutions, has announced that it has commissioned its Thornton manufacturing facility as a Perovskite Center of Excellence (COE). Effective immediately, the facility will be dedicated to the industrial commercialization of Ascent’s patent-pending perovskite solar technologies that are reportedly demonstrating lab efficiencies above 20%.

Ascent has dedicated its Thornton facility to the purpose of Perovskite manufacturing development, and to the conversion of the Company’s patent-pending Perovskite solar technology to industrial scale. The COE is resourced by a dedicated team of experts spanning Research, Development, Manufacturing and Operations; USD $30 million of industrial equipment at original cost; Ascent’s patent-pending Perovskites intellectual property; and operational facilities with 17 years of manufacturing heritage.

Read the full story Posted: Mar 14,2023

Researchers use Ruddlesden-Popper perovskites for improved solar cells

Scientists China's Zhengzhou University,  Xi'an Jiaotong University and Chinese Academy of Sciences (CAS) have designed a solar cell based on low-dimensional Ruddlesden-Popper (LPDR) perovskite that is said to have improved carrier transport properties.

The team explained that the new cells are more stable compared to regular 3D perovskite solar cells and are suitable for building-integrated photovoltaics (BIPV), conventional solar, and wearable devices.

Read the full story Posted: Mar 10,2023