Perovskite Solar - Page 46

New collaborative research center to be funded and established in order to push tandem solar modules forward

The U.S. Department of Energy Solar Energy Technologies Office (SETO) has announced that a team of researchers, led by MIT and including the University of California San Diego, has been selected to receive a $11.25 Million cost-shared award to establish a new research center that will advance the development of next-generation solar cells for commercial use.

A collaborative effort with CubicPV, solar startup Verde Technologies, and Princeton University, the center will bring together teams of researchers to support the creation of perovskite-silicon tandem solar modules. These are solar cells made of stacked materials—silicon paired with perovskites—that together absorb more of the solar spectrum than single materials, resulting in a dramatic increase in efficiency. Their potential to generate significantly more power than conventional solar cells could make a meaningful difference in the race to combat climate change and the transition to a clean-energy future.

Read the full story Posted: Apr 21,2023

KAUST team claims new world record for tandem solar cell efficiency

Researchers from the Photovoltaics Laboratory (KPV-Lab) at King Abdullah University of Science and Technology (KAUST) have reported a perovskite/silicon tandem solar cell with a power conversion efficiency (PCE) of 33.2%—the highest tandem device efficiency in the world to date, surpassing that of Helmholtz Zentrum Berlin's (HZB) record at 32.5% PCE.

The tandem device was reportedly certified by the European Solar Test Installation (ESTI) and listed at the top of the National Renewable Energy Laboratory's (NREL), Best Research-cell Efficiency Chart.

Read the full story Posted: Apr 14,2023

Researchers show clay substance can improve the efficiency and stability of perovskite solar cells

Scientists from Turkey's Konya Technical University have shown that sepiolite, a naturally occurring clay substance, can be added to perovskite precursor materials, and form a scaffold layer that can improve the efficiency and stability of solar cells. The scientists believe that this substance could be valuable in developing reproducible processes for the production of large-area perovskite solar cells.

SEM image of aerosol coated sepiolite films on FTO glasses obtained from 1 mg/ml dispersion in water. (a) 30KX and (b) 50KX magnification. Image from study

The team found that sepiolite, a naturally occurring clay mineral largely composed of silicon, magnesium and oxygen, has a very high active surface area and can easily be dispersed in solvents. It can be used without any alterations as a scaffold layer in a perovskite solar cell. The group worked with planar perovskite solar cells with an initial maximum efficiency of 7.92%, and found that cells fabricated with the sepiolite additive jumped to a maximum efficiency just over 16%, more than a 50% increase for cells produced under otherwise identical conditions.

Read the full story Posted: Apr 12,2023

Researchers report triple junction perovskite solar cell with 24.3% efficiency

Researchers from the University of Toronto in Canada, Northwestern University, The University of Toledo and University of North Carolina at Chapel Hill in the United States, King Abdullah University of Science and Technology (KAUST) in Saudi Arabia, Yunnan University in China, Ecole Polytechnique Fedérale de Lausanne (EPFL) in Switzerland and University of Warwick in the UK have developed a triple-junction perovskite solar cell with a record efficiency of 24.3% with an open-circuity voltage of 3.21 V. 

The NREL has certified the cell’s quasi-steady-state efficiency as 23.3%, which the team stated is the first reported certified efficiency for perovskite-based triple-junction solar cells. They added that triple-junction perovskite solar cells have so far demonstrated a maximum efficiency of around 20%.

Read the full story Posted: Apr 09,2023

Researchers develop perovskite solar panels with a thermally stable device stack

A research team led by Imec, that also included teams from Hasselt University and Kuwait University, has fabricated a perovskite solar module based on a scalable, stable device stack that can be processed with industry-compatible techniques, such as sputtering, evaporation, and slot-die coating.

The panel is based on 17%-efficient perovskite solar cells built with a p-i-n configuration, an electron transport layer made of nickel(II) oxide (NiOx), a perovskite layer deposited via slot-die coating, an electron transport layer made of buckminsterfullerene (C60) and lithium fluoride (LiF), a bathocuproine (BCP) buffer layer, and a copper (Cu) electrode.

Read the full story Posted: Apr 06,2023

Greatcell Australia and First Graphene explore graphene enhancements to perovskite solar cells

It was recently reported that Greatcell Australia is working with graphene company First Graphene on graphene enhancements to perovskite solar cell technology.

Greatcell Australia has reportedly established a pilot plant in New South Wales and is in the advanced stages of testing its range of perovskite solar cells (PSCs) with manufacturers around the world. “Greatcell is aiming to modularize their production lines for product flexibility, due in part to the easier assembly and reduced number of steps to produce PSCs compared to silicon solar cells.”

Read the full story Posted: Apr 04,2023

Researchers design a slot die-coated perovskite solar panel with improved efficiency retention

Scientists from Nanyang Technological University, along with their collaborators, have fabricated a slot die-coated perovskite solar panel that reportedly offers remarkable efficiency retention.

The researchers used a hydrophobic, all-organic salt known as fluorinated anilinium benzylphosphonate (FABP) to modify the top surface of large area slot-die coated methylammonium (MA)-free halide perovskite layers. The salt acts as a molecular lock that is able to bind to both anion and cation vacancies, which significantly increases the materials' intrinsic stability.

Read the full story Posted: Apr 02,2023

SEKISUI CHEMICAL and JERA announce commencement of joint demonstration test of perovskite solar cells

SEKISUI CHEMICAL has announced that it commenced a demonstration test to install film-type perovskite solar cells at thermal power stations together with JERA on March 24, 2023.

SEKISUI CHEMICAL has created a 30 cm-wide roll-to-roll manufacturing process utilizing its original “sealing, film formation, materials and process technology,” and have confirmed 10 years equivalent of outdoor durability, which is said to be critical to the development of film-type perovskite solar cells. Furthermore, this manufacturing process has reportedly been successfully used to produce film-type perovskite solar cells with a power generation efficiency of 15%. Development is being accelerated to further improve durability and power generation efficiency, as well as to establish manufacturing technology for 1 m-wide rolls.

Read the full story Posted: Mar 31,2023

IIT Roorkee and GIC Re to co-develop perovskite-based solar window technology

The Indian Institute of Technology Roorkee (IIT Roorkee) and General Insurance Corporation of India (GIC Re) have signed a partnership agreement to develop perovskite-based solar window technology that will enhance the solar power generation in India and lead to greater sustainable development.

The new solar window technology will be designed and developed by Prof. Soumitra Satapathi from the Department of Physics (IIT Roorkee) and his team. Under the program, semi-transparent perovskite solar cells will be developed for building integrated photovoltaics (BIPV). The new window solar technology will harness electricity during the daytime and reduce reliance on traditional electricity sources. 

Read the full story Posted: Mar 30,2023

Researchers fabricate flexible perovskite solar cells via blade coating in ambient conditions without using toxic solvents

Researchers at University of Rome “Tor Vergata”'s CHOSE (Centre for Hybrid and Organic Solar Energy) and CNR-ISM Institute of Structure of Matter have deposited flexible perovskite solar modules without using toxic solvents, via blade coating in ambient air. 14% PCE was reportedly obtained through the optimization of coating parameters and the use of additives. 

The scalable ambient air deposition of perovskite solar devices remains a major challenge of this technology. In addition, toxic solvents are regularly used in perovskite layer deposition, which can damage the environment and endanger the safety of potential production lines. In this recent work, the team managed to address these issues and fabricate sustainable flexible perovskite solar modules (flex-PSMs), in which all layers were deposited via a blade coating in ambient air without the usage of toxic solvents. 

Read the full story Posted: Mar 27,2023