A team of researchers from Lund University (Sweden), the Russian Academy of Science (Russia) and the Technical University of Dresden (Germany) has developed a new methodology for the study of lead halide perovskites, based on the complete mapping of the photoluminescence quantum yield and decay dynamics in the two-dimensional (2D) space of both fluence and frequency of the excitation light pulse.
Such 2D maps not only offer a complete representation of the sample's photophysics, but also allow to examine the validity of theories, by applying a single set of theoretical equations and parameters to the entire data set.
"The wealth of information contained in each 2D map allows us to explore different possible theories that may explain the complex behavior of charge carriers in metal halide perovskites" adds Dr. Pavel Frantsuzov from the Siberian Branch of the Russian Academy of Science. Indeed, the researchers discovered that the two most commonly applied theories (the so called "ABC theory' and the Shockley-Read-Hall theory) cannot explain the 2D maps across the entire range of excitation parameters. They propose a more advanced theory that includes additional nonlinear processes to explain the photophysics of metal halide perovskites.
The researchers show that their method could have important potential for the development of more efficient perovskite solar cells. Prof. Dr. Yana Vaynzof, Chair for Emerging Electronic Technologies at the Institute for Applied Physics and Photonic Materials and the Center for Advancing Electronics Dresden (cfaed) explains: "By applying the new methodology to perovskite samples with modified interfaces, we were able to quantify their influence on the charge carrier dynamics in the perovskite layer by changing, for example, the density and efficacy of traps. This will allow us to develop interfacial modification procedures that will lead to optimal properties and more efficient photovoltaic devices."
Importantly, the new method is not limited to the study of metal halide perovskites and can be applied to any semiconducting material. "The versatility of our method and the ease with which we can apply it to new material systems is very exciting! We anticipate many new discoveries of fascinating photophysics in novel semiconductors." adds Prof. Scheblykin.