Technical / research - Page 42

Researchers develop bright, efficient and stable perovskite light-emitting diodes

Researchers from Korea's PEROLED, Seoul National University and Korea Basic Science Institute (KBSI), along with scientists from the UK's University of Cambridge, have reported an ultra-bright, efficient and stable perovskite LED made of core/shell perovskite nanocrystals with a size of approximately 10 nm, obtained using a simple in situ reaction of benzylphosphonic acid (BPA) additive with three-dimensional (3D) polycrystalline perovskite films, without separate synthesis processes.

During the reaction, large 3D crystals are split into nanocrystals and the BPA surrounds the nanocrystals, achieving strong carrier confinement. The BPA shell passivates the undercoordinated lead atoms by forming covalent bonds, and thereby greatly reduces the trap density while maintaining good charge-transport properties for the 3D perovskites.

Read the full story Posted: Nov 11,2022

Researchers from the University of Japan develop a perovskite-based narrow-spectrum blue QD emitter

Researchers from the University of Tokyo have made progress with the development of blue-emitting quantum dots, which is seen as highly challenging. They have shown that using a new bottom-up design strategy and self-organizing chemistry can help create a high purity blue-emitting QD material (with a narrow emission spectrum).

Electric Microscope images of experimental QDs, University of Tokyo

 

The newly developed QDs have a special chemical composition that combines both organic and inorganic substances, such as lead perovskite, malic acid, and oleylamine. The materials self-aligned into a cube of 64 lead atoms. The lead researcher, Professor Eiichi Nakamura, says that "it took over a year of methodically trying different things to find that malic acid was a key piece of our chemical puzzle".

Read the full story Posted: Nov 11,2022

Perovskite panchromatic absorber could improve photoelectrochemical cell for hydrogen production

Researchers from Ulsan National Institute of Science and Technology (UNIST) have designed a photoelectrochemical cell for hydrogen production utilizing a high-performance organic–inorganic halide perovskite as a panchromatic absorber. The cell achieved a record high photocurrent density of 19.8 mA cm−2.

Solar hydrogen production is one of the ultimate technologies needed to realize a carbon-neutral, sustainable society. However, an energy-intensive water oxidation half-reaction together with the poor performance of conventional inorganic photocatalysts have been big hurdles for practical solar hydrogen production. This study paves the way to improve solar hydrogen productivity.

Read the full story Posted: Nov 08,2022

Researchers use surface modulators to achieve efficient inverted perovskite solar cells

Researchers from the University of Surrey, Swansea University, University of Sheffield, University of Cambridge and University of Oxford in the UK, China-based CAS and Canada's University of Toronto have fabricated an inverted perovskite solar cell by using a surface modulator that reportedly facilitates superior passivation on perovskite surfaces, increasing overall cell efficiency. As the surface modulator, the scientists tested two organic halide salts known as 4-hydroxyphenethylammonium iodide (HO-PEAI), and 2-thiopheneethylammonium iodide (2-TEAI).

“These modulators can affect the surface energy of the perovskite films,” the team explained. They explained that the two compounds can dramatically reduce non-radiative interfacial recombination. This can have a significant impact on electrical performance in perovskite cells, with implications for open-circuit voltage, short-circuit current, fill factor, and ultimately, power conversion efficiency. They reported that “2-TEAI showed a stronger interaction than HO-PEAI, forming a quasi-2D structure on the perovskite surface without further annealing.”

Read the full story Posted: Nov 07,2022

Researchers use Sulfonium cations to improve quasi-2D perovskite solar cells

Researchers from the National Center for Nanoscience and Technology (NCSNT) of the Chinese Academy of Sciences (CAS) and Beihang University have developed a sulfonium cations-assisted intermediate engineering strategy to study the evolution of intermediates and the film properties of quasi-2D perovskites. The researchers developed a facile strategy for intermediate engineering by employing sulfonium cations to regulate the transformation of intermediates during the crystallization process and improve the film quality of quasi-2D perovskites.

The intermediates were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) to reveal the composition and transformation process of the intermediates. The introduction of sulfonium cations inhibited the formation of unfavorable solvated lead iodide and promoted the formation of favorable perovskite intermediates with fiber-like morphology, which is conducive to the formation of high-quality perovskite crystals. The above effects have been confirmed in quasi-2D perovskite with different n values and 3D perovskites.

Read the full story Posted: Nov 06,2022

Researchers propose new material for perovskite solar cells

Scientists from the Ural Federal University (UrFU) and the Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences (along with their colleagues) have proposed a new type of material for transporting electrons in perovskite solar cells, which has a number of advantages.

The team reported that with the new material, they were able to achieve solar energy conversion efficiency of 12%. "The family of molecules we found carries electrons in PSCs slightly worse than the fullerenes used today, but they are about twice as cheap, much easier to produce, and have a number of other technological advantages," says Gennady Rusinov, associate professor at the Department of Organic Synthesis Technology of UrFU.

Read the full story Posted: Oct 31,2022

Researchers use eco-friendly and low-cost organic polymer to enhance the stability of planar perovskite solar cells

Researchers from China's Huazhong University of Science and Technology and Singapore's National University of Singapore have introduced an eco-friendly and low-cost organic polymer, cellulose acetate butyrate (CAB), to the grain boundaries and surfaces of perovskites, resulting in a high-quality and low-defect perovskite film with a nearly tenfold improvement in carrier lifetime.

The CAB-treated perovskite films have a well-matched energy level with the charge transport layers, thus suppressing carrier nonradiative recombination and carrier accumulation. As a result, the optimized CAB-based device achieved a champion efficiency of 21.5% compared to the control device (18.2%).

Read the full story Posted: Oct 26,2022

Researchers achieve high-performance flexible all-perovskite tandem solar cell

Researchers from Empa, EPFL, Sichuan University, Jiaxing University, Soochow University, University of Cologne, University of Potsdam, HZB and the University of Oxford have developed a flexible all-perovskite tandem solar cell with a mitigated open-circuit voltage deficit and reduced voltage loss. The team reported flexible tandem efficiency of almost 24% on small area cells using the spin coating method.

Flexible all-perovskite tandem cells are currently less developed than rigid cells, due to a difficult deposition process for the cell's functional layers and a lower open-circuit voltage. This is due to high defect densities within the perovskite absorber layer and at the perovskite/charge selective layer interface.

Read the full story Posted: Oct 22,2022

Researchers create efficient and stable inverted perovskite solar cells via vacuum deposition

Researchers from Ulsan National Institute of Science and Technology (UNIST), Wuhan University of Technology and Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory have manufactured high efficiency, stable, and scalable perovskite solar cells (PSCs) via vacuum deposition, a method of fabricating organic light-emitting display devices (OLEDs)

In their study, the research team demonstrated efficient and stable PSCs with a vacuum-processed Ruddlesden-Popper (RP) phase perovskite passivation layer. By controlling the deposition rate of the RP phase perovskite, which directly influenced its crystallographic orientation, the research team successfully obtained a highly ordered 2D perovskite passivation layer.

Read the full story Posted: Oct 21,2022

Researchers design spray-coated perovskite hemispherical photodetector

Researchers from China's Jilin University have designed a spray coated spherical perovskite photonic sensor made of phenyl ethyl ammonium/formamidinium lead halide (PEA2FAn-1PbnX3n+1). The researchers utilized the perovskite formulations to regulate the crystallization rate. Cyclic spray-coating and the solution concentration were used to control the coating thickness from a few nanometers to hundreds of micrometers. 

Sphere imagers featuring specific wavelength recognition and wide-angle imaging are required in order to meet the fast development pace of modern technology. However, it remains challenging to deposit high-quality photosensitive layers on sphere substrates from low-cost solution processes. In this recent study, the team demonstrated the feasibility of using a rapid spray-coating procedure to fabricate perovskite hemispherical photodetectors that can execute lens-free scanning at nearly 180°, considerably decreasing the reliance on complex optical components.

Read the full story Posted: Oct 20,2022