Researchers create efficient and stable inverted perovskite solar cells via vacuum deposition

Researchers from Ulsan National Institute of Science and Technology (UNIST), Wuhan University of Technology and Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory have manufactured high efficiency, stable, and scalable perovskite solar cells (PSCs) via vacuum deposition, a method of fabricating organic light-emitting display devices (OLEDs)

In their study, the research team demonstrated efficient and stable PSCs with a vacuum-processed Ruddlesden-Popper (RP) phase perovskite passivation layer. By controlling the deposition rate of the RP phase perovskite, which directly influenced its crystallographic orientation, the research team successfully obtained a highly ordered 2D perovskite passivation layer.

The 2D perovskite layer passivated the bulk perovskite defects and promoted the charge transport efficiency in the PSC. As a result, the BABr (V) inverted PSC achieved a champion PCE of 21.4% in the resulting device with outstanding humidity and thermal stability. This number is by far the highest ever achieved for PSCs formed by vacuum deposition. In addition, it showed enhanced long-term operational stability, such as maintaining 62% of its initial PCE (average) when operated for for 1,000 hours under 60-70% relative humidity at room temperature, even without device encapsulation.

"Our findings provide a new perspective toward further improving the performance of PSCs by mitigating nonradiative recombination pathways in perovskites," noted the research team.

Posted: Oct 21,2022 by Roni Peleg