Tandem - Page 21

Oxford PV hopes to deliver perovskite-silicon tandem solar cells within a year

Oxford PV recently stated that it hopes to deliver perovskite-silicon tandem solar cells to high end solar module manufacturers in the first half of 2021, now less than a year away.

Oxford PV Tandem Cell Architecture image

The group expects these solar cells to have an efficiency between 26-27%, to increase in efficiency by 1% per year as the company improves its manufacturing techniques. It was said that initially, a 400 watt 60-cell solar module will probably be available.

Read the full story Posted: Apr 07,2020

Efficient tandem solar cell developed using wide bandgap perovskites

An international research team has developed a new type of solar cell that can both withstand environmental hazards and is 26.7% efficient in power conversion.

Highly efficient and stable double layer solar cell developed' imageStructure and photovoltaic performance for the perovskite-Si tandem device. Image by KAIST

The researchers, led by Byungha Shin, a professor from the Department of Materials Science and Engineering at KAIST, focused on developing a new class of light-absorbing material, called a wide bandgap perovskite. The material has a highly effective crystal structure that can process the power needs, but it can become problematic when exposed to environmental hazards, such as moisture. Researchers have made some progress increasing the efficiency of solar cells based on perovskite, but the material reportedly has greater potential than what was previously achieved.

Read the full story Posted: Mar 30,2020

ANU reaches 27.7% efficiency with silicon/perovskite tandem solar cell

Researchers at The Australian National University (ANU) have announced an impressive achievement - a silicon/perovskite tandem solar cell with a conversion efficiency of 27.7%.

Professor Kylie Catchpole says this would only need to improve slightly - to around 30% - before the technology could be rolled out around the world. "In comparison, typical solar panels being installed on rooftops at the moment have an efficiency around 20%" Professor Catchpole said.

Read the full story Posted: Mar 11,2020

HZB team brings the efficiency of perovskite silicon tandem solar cells to 29.15%

The groups of Steve Albrecht and Bernd Stannowski at HZB have reached a record efficiency of 29.15% of its tandem solar cell made of perovskite and silicon.

HZB team sets new efficiency record for perovskite-silicon cells imageThe illustration shows the structure of the tandem solar cell: between the thin perovskite layer (black) and the silicon layer (blue) are functional intermediate layers. © Eike Köhnen/HZB

This value has been officially certified by the CalLab of the Fraunhofer Institute for Solar Energy Systems (ISE) and means that surpassing the 30% efficiency mark is now within reach.

Read the full story Posted: Jan 29,2020

China-based team develops high efficiency perovskite/silicon tandem solar cells

A research group led by Prof. Liu Shengzhong from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS) and Prof. Yang Dong at Shaanxi Normal University have developed high efficiency semi-transparent perovskite solar cells by using MoO3 sandwiched gold nanomesh (MoO3/Au/MoO3) multilayer as the transparent electrode. Combined with a superior heterojunction silicon solar cell, a high efficiency four-terminal perovskite/silicon tandem solar cell was obtained.

Tandem/multijunction structure has been proven to be an effective way to break the Shockley-Queisser limit. To obtain a high efficiency tandem solar cell, the key is to fabricate transparent electrode with high conductivity as well as high transparency through a mild method.

Read the full story Posted: Nov 18,2019

New transparent conductive films may boost perovskite PV efficiency

Researchers from King Abdullah University of Science and Technology (KAUST) in Saudi Arabia and University of Twente in the Netherlands have developed transparent conductive films that let through a broader range of the solar spectrum, which are set to increase the power conversion efficiency of perovskite-based multijunction solar cells beyond 30%.

The comparison of the used device test structures with different silicon bottom cells imageA comparison of the used device test structures with different silicon bottom cells. Image taken from Advanced Functional Materials

Performance of perovskite-based tandem solar cells rests on the ability of the top cell to harvest the blue portion of the solar spectrum while letting through the near-infrared light. Conversely, the bottom cell only needs to absorb near-infrared light. "The semitransparency of the top cell depends on the optical bandgap and thickness of the perovskite thin film as well as the characteristics of the transparent electrodes, especially their sun-exposed side," explains study lead Stefaan De Wolf from theKAUST Solar Center.

Read the full story Posted: Oct 03,2019

HZB researchers reach 23.26% record efficiency for tandem perovskite-CIGS solar cell

A team led by Prof. Steve Albrecht from the HZB has announced a new world-record: a tandem solar cell with certified efficiency of 23.26% that combines the semiconducting materials perovskite and CIGS. One reason for this success lies in the cell's intermediate layer of organic molecules: they self-organize to cover even rough semiconductor surfaces. Two patents have been filed for these layers.

World record for tandem perovskite-CIGS solar cell image

Perovskite-based solar cells have experienced an incredibly rapid increase in efficiency over the last ten years. The combination of perovskites with classical semiconductor materials such as silicon and copper-indium-gallium-selenide (CIGS) compounds in tandem solar cells promises low-cost, high-performance solar modules for the future. However, losses at the electrodes between the two semiconductors considerably reduce the efficiency.

Read the full story Posted: Sep 12,2019

Flexible tandem perovskite/CIGS solar cells with 23% conversion efficiency reported by Solliance and MiaSolé

Solliance and U.S-based MiaSolé announced a new record - power conversion efficiency of 23% on a flexible tandem solar cell: a top flexible semi-transparent perovskite solar cell with a bottom flexible copper indium gallium selenide (CIGS) cell.

Solliance and Miasole's 23%efficiency tandem perovskite/CIGS cells image

This achievement comes only 9 months after the January 2019 announcement by Solliance and MiaSolé regarding a flexible solar cell with an impressive power conversion efficiency of 21.5%. The solar cell, similarly to this newly announced one, combined two thin-film solar cell technologies into a 4 terminal tandem solar cell stack: a top flexible semi-transparent perovskite solar cell with a bottom flexible copper indium gallium selenide (CIGS) cell.

Read the full story Posted: Sep 12,2019

Korean scientists develop graphene electrode to enable next-gen perovskite solar cells

Several research institutions in South Korea are actively conducting research and development on next-generation solar cells, heightening expectations for commercialization. The research team led by Prof. Yoon Soon-gil of Chungnam National University has developed a new graphene electrode to produce perovskite solar cells at a low temperature. In addition, the team led by Prof. Choi Kyoung-jin of the School of Materials Science and Engineering at UNIST has developed a new concept tandem solar cell using transparent conductive adhesives (TCA).

The graphene electrode developed by Professor Yoon's team can help create a perovskite solar cell at a low temperature and can raise both safety and economic efficiency.

Read the full story Posted: Sep 09,2019

KAUST team reports 26.2% PCE for 4T perovskite/silicon tandems enabled by IZRO electrodes

Parasitic absorption in transparent electrodes is one of the main roadblocks to enabling power conversion efficiencies (PCEs) for perovskite'based tandem solar cells beyond 30%. To reduce such losses and maximize light coupling, the broadband transparency of such electrodes should be improved, especially at the front of the device.

Improves NIR response in si/per tandems image

Erkan Aydin and coworkers from KAUST Photovoltaics Laboratory have recently shown the excellent properties of Zr'doped indium oxide (IZRO) transparent electrodes for such applications, with improved near'infrared (NIR) response compared to conventional tin'doped indium oxide (ITO) electrodes. Optimized IZRO films feature very high electron mobility (up to '77 cm2 V'1 s'1), enabling highly infrared transparent films with a very low sheet resistance ('18 Ω '1 for annealed 100 nm films). For devices, this translates to a parasitic absorption of only '5% for IZRO within the solar spectrum (250'2500 nm range), to be compared with '10% for commercial ITO.

Read the full story Posted: May 20,2019