Perovskite Solar - Page 55

Researchers design unique bifacial monolithic all-perovskite tandem solar cells

A team of scientists, led by Professor Hairen Tan of Nanjing University, has demonstrated (for was the team states is the first time) bifacial all-perovskite monolithic tandem solar cells and examined their output power potential.

The research team demonstrated the design and fabrication of bifacial all-perovskite tandem solar cells using transparent conductive oxide (TCO) as the back electrode. The bandgap technique of the top subcell was used to obtain current matching under different backlights. The influence of the albedo on the photovoltaic parameters and the spectral sensitivity was systematically investigated. The bifacial tandems reportedly showed a high output power density of 28.51 mW cm−2 under a realistic rear illumination (30 mW cm− 2). Further energy yield calculation showed substantial energy yield gain for bifacial tandems compared with the monofacial tandems under various ground albedo for different climatic conditions. This work provides a new device architecture for higher output power for all-perovskite tandem solar cells under real-world conditions.

Read the full story Posted: Oct 19,2022

Toray to ship a slot-die coater to a new perovskite PV Production Line

Toray Engineering says that it will ship a slot-die coater to a new perovskite PV production line. The shipment is scheduled by the end of 2022, or in early (Q1)2023. The new coater can handle subsrates up to 1 meter In size, which will enable the world's largest size perovskite PV production line. Products to be manufactured on this line will include BIPV and roof mounted panels, with an annual production capacity of 100 MW.

Toray Engineering has been supplying slot-die coaters and many other process and inspection tools worldwide for the display, semiconductor, and LiB industries. Having two solutions available in slot-die coating, which are Roll to Roll (R2R) and sheet-to-sheet, Toray Engineering is the a leader in slot die equipment supply with a sales record of over 1,000 units.

Read the full story Posted: Oct 17,2022

Wuxi UtmoLight Technology announces 18.2% efficiency for large area perovskite solar module

Chinese perovskite solar PV company Wuxi UtmoLight Technology recently achieved 18.2% power conversion efficiency for an in-house developed large-scale perovskite solar module with an area of 756 cm², as reports suggest.

UtmoLight refers to this as a breakthrough in large size perovskite module technology after having reported the same 18.2% efficiency for a smaller size module with 300 cm² dimension in the past. This shows the module can maintain a high conversion efficiency despite the enlargement of the module area. Mass production of this technology is now becoming mature, it added.

Read the full story Posted: Oct 17,2022

Researchers design monolithic perovskite/black-silicon tandem cells based on tunnel oxide passivated contacts

Researchers from Zhejiang Energy Group R&D and the Chinese Academy of Sciences (CAS) have reported what they say is "the first monolithic perovskite/silicon tandem featuring an industrially applicable front-side-nanostructured black silicon with a tunnel oxide passivated contact (TOPCon)".

The TOPCon together with the surface reconstruction of black silicon contributes to the high-level surface passivation without sacrificing the broadband light trapping. Additionally, the reconstructed nanotexture significantly facilitates the wetting of perovskite and acts as a nanoconfining scaffold to guide the vertical growth of perovskite.

Read the full story Posted: Oct 13,2022

Researchers develop perovskite solar cell with over 20% efficiency that generates electricity for more than 1,000 continuous hours

Researchers from Japan-based National Institute for Materials Science (NIMS) recently developed a durable 1cm2 perovskite solar cell capable of generating electricity for more than 1,000 continuous hours at a photoelectric conversion efficiency (i.e., power generation efficiency) of more than 20% in exposure to sunlight.

As this solar cell can be fabricated on the surface of a plastic material at approximately 100°C, this technique could have great potential for developing light, versatile solar cells.

Read the full story Posted: Oct 10,2022

Researchers use slot dye coating to fabricate perovskite/silicon tandem solar cells with optimized bandgap

Researchers from Helmholtz-Zentrum Berlin (HZB) have demonstrated the scalable fabrication of perovskite/silicon tandem solar cells with optimized bandgap using the slot-die coating method. The team used slot-die coating for an efficient, 1.68 eV wide bandgap triple-halide (3halide) perovskite absorber, (Cs0.22FA0.78)Pb(I0.85Br0.15)3 + 5 mol % MAPbCl3. The team demonstrated that the fabrication route is suitable for tandem solar cells without phase segregation. 

The researchers successfully fabricated a triple-halide perovskite film with top cell optimized bandgaps, high PL quantum yield (PLQY), and improved film quality using the slot-die coating method. They have also efficiently integrated halide perovskites with industrial silicon bottom cells in a tandem architecture, demonstrating the potential of fabricating industrially relevant and scalable perovskite solar cells.

Read the full story Posted: Oct 07,2022

Researchers set out to develop low-cost and stable metal electrodes for mass production of perovskite solar cells

Researchers from Peking University, China Automotive Technology and Research Center, Beijing Institute of Technology and Jiangnan University recently demonstrated the ability of tuning the Fermi level of the hole transport layer (HTL) to reduce the energy level difference (Schottky barrier) between HTLs and Cu. In addition, the team identified that the balance of energy level difference between HTL and adjacent layers (including perovskite and Cu) is crucial to efficient carrier transportation and photovoltaic performance improvement in the PSCs.

The team's effort was aimed at addressing the challenge of developing low-cost and stable metal electrodes, which could be very important for mass production of perovskite solar cells (PSCs). As an earth-abundant element, Cu becomes an alternative candidate to replace noble metal electrodes such as Au and Ag, due to its comparable physiochemical properties with simultaneously good stability and low cost. However, the undesirable band alignment associated with the device architecture impedes the exploration of efficient Cu-based n-i-p PSCs.

Read the full story Posted: Oct 02,2022

Solliance team breaks 30% efficiency barrier

Solliance partners TNO, TU Eindhoven, imec and TU Delft have joined forces to further push the conversion efficiency of tandem solar cells to beyond the limits of today’s commercial PV modules. They have achieved an extraordinary feat: the first time that four-terminal perovskite/silicon tandem devices with certified top cell passed the barrier of 30%.

Bottom silicon solar cell and top perovskite solar cell with transparent contacts. Photo credit: Niels van Loon

Such high efficiency enables more power per square meters and less cost per kWh. The result was presented during the 8th World Conference on Photovoltaic Energy Conversion (WCPEC-8) in Milan and has been achieved by combining perovskite solar cell tech with conventional silicon solar cell technologies. The perovskite cell that features transparent contacts and is part of the tandem stack has been independently certified.

Read the full story Posted: Sep 26,2022

Researchers improve perovskite solar cells through novel solvent design

Researchers from Rice University, Northwestern University, Purdue University, University of Washington, CNRS and Argonne National Laboratory have addressed a long-standing issue in making stable, efficient solar panels out of halide perovskites. It took finding the right solvent design to apply a 2D top layer of desired composition and thickness without destroying the 3D bottom one (or vice versa). Such a cell would turn more sunlight into electricity than either layer on its own, with better stability.

The team, led by Chemical and biomolecular engineer Aditya Mohite and his lab at Rice’s George R. Brown School of Engineering, recently reported their success at building thin 3D/2D solar cells that deliver a power conversion efficiency of 24.5%.

Read the full story Posted: Sep 24,2022