Perovskite applications - Page 11

MIT team develops computer vision technique that speeds up characterization of newly synthesized electronic materials

MIT researchers have developed a new computer vision technique that significantly speeds up the characterization of newly synthesized electronic materials. The technique automatically analyzes images of printed semiconducting samples and quickly estimates two key electronic properties for each sample: band gap and stability.

Overview of the synthesis and characterization pipeline for perovskite semiconductors. Image credit: Nature Communications

The new technique reportedly characterizes electronic materials 85 times faster compared to the standard benchmark approach. The researchers intend to use the technique to speed up the search for promising solar cell materials. They also plan to incorporate the technique into a fully automated materials screening system.

Read the full story Posted: Jun 11,2024

Researchers use CIP method to create carbon electrode-based perovskite solar cells with 20.8% efficiency

Researchers from Australia's Monash University and CSIRO Manufacturing have reported a lamination technique, known as cold isostatic pressing (CIP), to build a perovskite solar cell based on a flexible bilayer electrode made of carbon and silver. The resulting electrode can reportedly compete with gold-carbon electrode based counterparts in terms of efficiency and stability.

The back side of a C-PSC with a custom-designed electrode after CIP processing. Image credit: Communications Materials

The researchers, led by CSIRO Manufacturing, which is part of Australia's Commonwealth Scientific and Industrial Research Organization (CSIRO), explained that while perovskite solar cells (PSCs) with evaporated gold (Au) electrodes have shown promising efficiencies, the maturity of the technology still demands low-cost and scalable alternatives to progress towards commercialization. Carbon electrode-based PSCs (C-PSCs) represent a promising alternative, however, optimizing the interface between the hole transport layer (HTL) and the carbon electrode without damaging the underlying functional layers is a persistent challenge, which the team set out to address.

Read the full story Posted: Jun 11,2024

Researchers show that strong-bonding hole-transport layers reduce ultraviolet degradation of perovskite solar cells

Researchers from the University of North Carolina at Chapel Hill, Colorado School of Mines, National Renewable Energy Laboratory (NREL), University of Toledo and University of California San Diego have pointed out that the light-emitting diodes (LEDs) used in indoor testing of perovskite solar cells do not expose them to the levels of ultraviolet (UV) radiation that they would encounter in actual outdoor use. 

The scientists reported degradation mechanisms of p-i-n–structured perovskite solar cells under unfiltered sunlight and with LEDs. Weak chemical bonding between perovskites and polymer hole-transporting materials (HTMs) and transparent conducting oxides (TCOs) reportedly dominate the accelerated A-site cation migration, rather than direct degradation of HTMs.

Read the full story Posted: Jun 10,2024

Researchers develop ultrathin flexible monolithic perovskite/silicon tandem solar cell

Researchers from the Ningbo Institute of Materials Technology and Engineering at the Chinese Academy of Sciences recently reported a novel perovskite/silicon tandem solar cell based on flexible ultrathin silicon, with a thickness of about 30 µm.

Despite major progress in the efficiency of rigid perovskite/silicon tandem solar cells, flexible perovskite/silicon tandem solar cells have remained elusive. The team explains that this is due to the challenge of enhancing light absorption in ultrathin silicon bottom cells while maintaining their mechanical flexibility.

Read the full story Posted: Jun 09,2024

Researchers develop method to create layered perovskite nanowires with unusual optical properties

Researchers from Purdue University and ShanghaiTech University have developed a patent-pending method to synthesize high-quality, layered perovskite nanowires with large aspect ratios and tunable organic-inorganic chemical compositions.

The novel method creates layered perovskite nanowires with exceptionally well-defined and flexible cavities that exhibit a wide range of unusual optical properties beyond conventional perovskites.

Read the full story Posted: Jun 07,2024

Researchers develop multicolor stretchable perovskite electroluminescent devices for user-interactive displays

Researchers at City University of Hong Kong (CityU) have presented a novel material design strategy and simple device-manufacturing process for skin-conformable perovskite-based alternating-current electroluminescent (PeACEL) devices. 

Working mechanism of the PeACEL device. Image credit: Nature Photonics

These devices exhibit a narrow emission bandwidth (full-width at half-maximum, <37 nm), continuously tunable emission wavelength (468–694 nm), high stretchability (400%) and adequate luminance (>200 cd m−2). 

Read the full story Posted: Jun 07,2024

Researchers exceed 99.5% geometrical fill factor in perovskite solar minimodules with advanced laser structuring

Researchers at CHOSE (Centre for Hybrid and Organic Solar Energy) at University of Rome ‘‘Tor Vergata’’ and Solertix (affiliated with Italy-based solar manufacturer FuturaSun) have reported reduced yield losses in cell-to-module scaling by utilizing ultranarrow interconnection of 19.5 μm. 

In addition, the proposed interconnection technique may be used to achieve a 30% efficiency in area-matched 4T tandem designs featuring a perovskite module over a silicon cell.

Read the full story Posted: Jun 06,2024

A consortium of Russian universities secures grant to develop solar panels to work in space for at least 20 years

According to reports by the Ural Federal University (UrFU), a consortium of universities in Russia has won a grant to create solar panels that could work in space for at least 20 years. 

The work will be carried out in 2024-2026. The total amount of financing will be about 300 million rubles (over USD$3,300,000). The purpose of the grant is to create solar panels capable of operating in conditions of cosmic radiation, with a high efficiency and energy efficiency.

Read the full story Posted: Jun 05,2024

Researchers develop perovskite-based bird-eye-inspired camera for enhanced object detection

Researchers from Gwangju Institute of Science and Technology (GIST) and Institute for Basic Science (IBS) have developed a perovskite-based camera, inspired by the structures and functions of birds' eyes, specializing in object detection. 

Schematic illustration showing the visual ecology of birds. Image from Science Robotics

The eyes of different organisms in the natural world have evolved and been optimized to suit their habitat and the environment in which they survive. As a result of countless years of evolutionary adaptation to the environment of living and flying at high altitudes, bird eyes also have unique structures and visual functions. In the retina of an animal's eye, there is a small pit called the fovea that refracts the light entering the eye. Unlike the shallow foveae found in human eyes, bird eyes have deep central foveae, which refract the incoming light to a large extent. The region of the highest cone density lies within the foveae, allowing the birds to clearly perceive distant objects through magnification. This specialized vision is known as foveated vision.

Read the full story Posted: Jun 02,2024

Researchers address the challenges of proton-conducting perovskites for next-generation fuel cells

Protonic ceramic fuel cells (PCFCs) have attracted much attention lately. These devices do not operate via the conduction of oxide ions (O2−) but light protons (H+) with smaller valence. A key feature of PCFCs is their ability to function at low and intermediate temperatures in the range of 50–500 °C. However, PCFCs based on perovskite electrolytes reported thus far suffer from low proton conductivity at low and intermediate temperatures.

A research team, led by Professor Masamoto Yashima from Tokyo Institute of Technology (Tokyo Tech), in collaboration with High Energy Accelerator Research Organization (KEK), has set out to address this limitation of perovskite-based proton conductors. 

Read the full story Posted: Jun 01,2024