Flexibility

Novel bioinspired multidentate-cross-linking strategy enables highly stable flexible perovskite photovoltaics

Researchers from China's Northwestern Polytechnical University, Chinese Academy of Sciences (CAS) and Henan University have addressed the stability challenge of flexible perovskite solar cells (FPSCs). Inspired by the exceptional wet adhesion of marine mussels via adhesive proteins (dopamine, DOPA), the scientists proposed a multidentate-cross-linking strategy, which combines multibranched structure and adequate dopamine anchor sites in three-dimensional hyperbranched polymer to directly chelate perovskite materials in multiple directions.

Schematics of key components for the underwater adhesion feature of marine mussels and HPDA adhesive in perovskite films and interfaces. Image from: Nature Communications

This constructs a vertical scaffold across the bulk of perovskite films from the bottom to the top interfaces, that intimately binds to the perovskite grains and substrates with a strong adhesion ability, and enhances mechanical durability under high humidity. 

Read the full story Posted: Feb 27,2025

Versatile SnO2 inks boost PSC efficiency across multiple solar cell architectures

Recently, a University of Louisville team of researchers used nanoparticle inks by Sofab Inks (a U of Louisville spinout) to create PSCs with ~20% PCE on flexible substrates. Their study addresses the solvent scope and perovskite compatibility of acetate-stabilized yttrium-doped SnO2 (Y:SnO2) dispersions.

Tin oxide (SnO2) stands out as a compelling electron transport material (ETM) for perovskite solar cells (PSCs), boasting exceptional optoelectronic properties, coupled with low-temperature solution processability, cost-effectiveness, and remarkable stability. However, the widespread application of SnO2 has been hindered by solvent incompatibilities, limiting its use to devices where it is deposited beneath the perovskite layer. To unlock the full potential of SnO2 and expand its use across various device structures, including inverted PSCs and tandem devices, innovative deposition strategies will need to be developed. These advancements could pave the way for more efficient and versatile solar cell designs, pushing the field of photovoltaics forward.

The scientists showed that dispersions in several lower alcohols and select polar aprotic solvents can be directly deposited on perovskite using scalable and low-temperature processes. In addition, they are compatible with various perovskite formulations, including those with mixed cations and mixed anions.

Read the full story Posted: Feb 19,2025

P3C and NISE form partnership to accelerate the market entry of perovskite-based solar technology in India

India-based P3C has announced a partnership with the National Institute of Solar Energy (NISE). 

P3C and NISE have signed a Memorandum of Understanding (MoU) to accelerate India’s transition to a low-carbon, sustainable future. This partnership will focus on advancing perovskite solar technology and powering next-generation solar solutions, including glass and flexible perovskite modules, tandem solar cells, and advanced PV innovations for both urban and rural environments. The two parties' shared goal is to make clean energy accessible, efficient, and scalable across India, from rooftops and farmlands to smart cities and remote villages.

Read the full story Posted: Feb 16,2025

Researchers examine the importance of barrier films in maintaining the long-term durability and stability of flexible PSC modules

Researchers from Japan's Ritsumeikan University and Sekisui Chemical have studied the role of barrier films in shielding flexible perovskite solar modules from harsh environmental conditions. 

The research team utilized PSC modules made of methylammonium lead iodide (MAPbI₃), which were encapsulated with polyethylene terephthalate substrate with barrier films of varying water vapor transmission rates (WVTR). The PSC modules were subjected to a damp heat test, which utilized exposure of the modules to 85 °C temperature and 85% relative humidity. The conditions were set to simulate real-world outdoor conditions over extended periods.

Read the full story Posted: Feb 02,2025

Enecoat and Toyota jointly develop perovskite/silicon 4-terminal tandem solar cell with >30% efficiency

EneCoat Technologies has announced a conversion efficiency of over 30% with a 4-terminal tandem cell consisting of stacked perovskite and crystalline silicon solar cells in a joint development project with Toyota Motor Corporation. 

This achievement underscores the profound research and development capabilities of both companies in the field of perovskite solar cells and accelerates the practical application of high-efficiency solar cells, which is the objective of the joint development project. In this project, the two companies focused on the transmittance of perovskite solar cells and succeeded in improving the infrared transmittance to 81%.

Read the full story Posted: Jan 21,2025

PXP raises close to USD$10 million in Series A funding with SoftBank as lead investor

Japan-based startup PXP Corporation, developer of lightweight and flexible solar cells, has raised a total of 1.5 billion yen (almost USD$10 million) in Series A funding, led by SoftBank Corp., with participation from SOLABLE Corporation, Kowa Optronics Co., Ltd., Toyota Tsusho Corporation, J&TC Frontier LLC (a joint investment vehicle between JFE Engineering Corporation and Tokyo Century Corporation), Automobile Fund Co., Ltd., Mitsubishi HC Capital Co., Ltd., Yokohama Capital Co., Ltd., and TARO Ventures. SoftBank has invested approximately 1 billion yen and acquired approximately 29.9% of PXP's shares.

The solar cell technology being developed by PXP has a tandem structure that combines perovskite solar cells and chalcopyrite solar cells, said to achieve more than 1.5 times the energy conversion efficiency (theoretical value: about 42%) of conventional solar cells. In addition, it is lightweight and flexible, weighing about one-tenth of conventional solar cells, and has high durability against shock and vibration. It can be installed in various locations depending on the application, and it is expected to reduce installation costs. PXP and SoftBank aim to use PXP's next-generation solar cells for various purposes, such as operating SoftBank's data center with green energy, in anticipation of future electricity demand.

Read the full story Posted: Dec 11,2024

Japanese Government to fund perovskite solar cell demonstration project

It was reported that Japan's Ministry of Economy, Trade and Industry (METI) and the New Energy and Industrial Technology Development Organization (NEDO) have decided to support a demonstration project for perovskite solar cells conducted by Sekisui Chemical and Tokyo Electric Power Company Holdings (HD). 

The total project cost is estimated at about 18.3 billion yen ( just under USD$119,000,000), with approximately 12.5 billion yen (around USD$81 million) to be subsidized through the Green Innovation (GI) Fund project. The project will verify installation methods, construction methods, and mass production technologies that take advantage of the unique characteristics of perovskite solar cells.

Read the full story Posted: Nov 07,2024

New CSIRO facility aims to take printed flexible solar tech from lab to real world

Australia’s national science agency, CSIRO, has opened a facility dedicated to taking its printed flexible solar technology out of the lab and into the real world, to help meet the growing demand for renewable energy across sectors. The facility received AUD$6.8 million (around USD$4,473,000) funding from Australian Renewable Energy Agency (ARENA) via the Australian Centre for Advanced Photovoltaics (ACAP). 

CSIRO’s innovative solar cells are made using perovskites, printed on long continuous rolls of flexible film. This makes them lightweight, portable, and suitable for various applications across urban construction, space, defense, mining, emergency management, disaster relief, and wearables.

Read the full story Posted: Nov 02,2024

Researchers fabricate flexible perovskite solar cells on polycarbonate films

Researchers from CHOSE (Centre for Hybrid and Organic Solar Energy) at Tor Vergata University of Rome, ENEA Frascati Research Centre, Fraunhofer FEP, University of Guilan and Halocell Europe have developed perovskite solar cells (PSCs) on polycarbonate films.

Despite polycarbonate's widespread use in many applications, poor chemical resistance and roughness have hindered its adoption as a substrate in solar cell technologies. These challenges were solved by developing a new planarizing layer over the polycarbonate films applied in liquid form using blade coating. This innovation reduced surface roughness from 1.46 µm to 23 nm, cut the water vapor transmission rate in half, and improved solvent resistance. As a result, the scientists achieved a power conversion efficiency of 13.0% for solar cells on polycarbonate substrates, with good durability and flexibility.

Read the full story Posted: Sep 16,2024

Halocell to start producing indoor perovskite PVs that can replace disposable batteries and charger cables

Australian start-up Halocell will reportedly begin producing flexible 7 centimeter-long photovoltaic strips that are said to generate enough power to replace the pair of disposable batteries in a TV remote, or the charger cable for a set of headphones. This represents the first large-scale manufacturing in Australia of perovskite PV technology.

The 5-volt Halocell perovskite strip. Image credit: Halocell

The Halocell modules will each cost less than a dollar to make and the Company has ambitious plans to produce millions per year, its CEO Paul Moonie said.

Read the full story Posted: Sep 11,2024