Efficiency - Page 23

Researchers show clay substance can improve the efficiency and stability of perovskite solar cells

Scientists from Turkey's Konya Technical University have shown that sepiolite, a naturally occurring clay substance, can be added to perovskite precursor materials, and form a scaffold layer that can improve the efficiency and stability of solar cells. The scientists believe that this substance could be valuable in developing reproducible processes for the production of large-area perovskite solar cells.

SEM image of aerosol coated sepiolite films on FTO glasses obtained from 1 mg/ml dispersion in water. (a) 30KX and (b) 50KX magnification. Image from study

The team found that sepiolite, a naturally occurring clay mineral largely composed of silicon, magnesium and oxygen, has a very high active surface area and can easily be dispersed in solvents. It can be used without any alterations as a scaffold layer in a perovskite solar cell. The group worked with planar perovskite solar cells with an initial maximum efficiency of 7.92%, and found that cells fabricated with the sepiolite additive jumped to a maximum efficiency just over 16%, more than a 50% increase for cells produced under otherwise identical conditions.

Read the full story Posted: Apr 12,2023

Researchers report triple junction perovskite solar cell with 24.3% efficiency

Researchers from the University of Toronto in Canada, Northwestern University, The University of Toledo and University of North Carolina at Chapel Hill in the United States, King Abdullah University of Science and Technology (KAUST) in Saudi Arabia, Yunnan University in China, Ecole Polytechnique Fedérale de Lausanne (EPFL) in Switzerland and University of Warwick in the UK have developed a triple-junction perovskite solar cell with a record efficiency of 24.3% with an open-circuity voltage of 3.21 V. 

The NREL has certified the cell’s quasi-steady-state efficiency as 23.3%, which the team stated is the first reported certified efficiency for perovskite-based triple-junction solar cells. They added that triple-junction perovskite solar cells have so far demonstrated a maximum efficiency of around 20%.

Read the full story Posted: Apr 09,2023

HZB sets new tandem solar cell world record, using MBRAUN systems

This is a sponsored post by MBRAUN

For years, the Helmholtz-Zentrum in Berlin has been researching the development of highly efficient perovskite tandem solar cells with great success. The HySprint Innovation Lab was founded specifically for this purpose, which cooperates internationally with other research groups as well as with industrial partners.

Many process steps are necessary to produce these highly efficient perovskite cells, which can all be realized together in the HySprint laboratory. A good research environment and high-quality equipment allow researchers to work optimally on their projects. The results at HZB are impressive. In recent years, the researchers have made significant progress in the field of perovskite tandem solar cells and achieved independently certified world record of tandem solar cells.

Read the full story Posted: Apr 06,2023

Researchers develop perovskite solar panels with a thermally stable device stack

A research team led by Imec, that also included teams from Hasselt University and Kuwait University, has fabricated a perovskite solar module based on a scalable, stable device stack that can be processed with industry-compatible techniques, such as sputtering, evaporation, and slot-die coating.

The panel is based on 17%-efficient perovskite solar cells built with a p-i-n configuration, an electron transport layer made of nickel(II) oxide (NiOx), a perovskite layer deposited via slot-die coating, an electron transport layer made of buckminsterfullerene (C60) and lithium fluoride (LiF), a bathocuproine (BCP) buffer layer, and a copper (Cu) electrode.

Read the full story Posted: Apr 06,2023

SEKISUI CHEMICAL and JERA announce commencement of joint demonstration test of perovskite solar cells

SEKISUI CHEMICAL has announced that it commenced a demonstration test to install film-type perovskite solar cells at thermal power stations together with JERA on March 24, 2023.

SEKISUI CHEMICAL has created a 30 cm-wide roll-to-roll manufacturing process utilizing its original “sealing, film formation, materials and process technology,” and have confirmed 10 years equivalent of outdoor durability, which is said to be critical to the development of film-type perovskite solar cells. Furthermore, this manufacturing process has reportedly been successfully used to produce film-type perovskite solar cells with a power generation efficiency of 15%. Development is being accelerated to further improve durability and power generation efficiency, as well as to establish manufacturing technology for 1 m-wide rolls.

Read the full story Posted: Mar 31,2023

Researchers fabricate flexible perovskite solar cells via blade coating in ambient conditions without using toxic solvents

Researchers at University of Rome “Tor Vergata”'s CHOSE (Centre for Hybrid and Organic Solar Energy) and CNR-ISM Institute of Structure of Matter have deposited flexible perovskite solar modules without using toxic solvents, via blade coating in ambient air. 14% PCE was reportedly obtained through the optimization of coating parameters and the use of additives. 

The scalable ambient air deposition of perovskite solar devices remains a major challenge of this technology. In addition, toxic solvents are regularly used in perovskite layer deposition, which can damage the environment and endanger the safety of potential production lines. In this recent work, the team managed to address these issues and fabricate sustainable flexible perovskite solar modules (flex-PSMs), in which all layers were deposited via a blade coating in ambient air without the usage of toxic solvents. 

Read the full story Posted: Mar 27,2023

Researchers develop effective strategy for creating high-quality perovskite films with tunable orientation to simultaneously boost the efficiency and stability of PSCs

Researchers at Shaanxi Normal University in China have developed an organic-inorganic hybrid perovskite solar cell that uses 2D perovskite crystal as the template for 3D perovskite growth. In the recent study, the team developed a seed-mediated method to in situ grow a layer of 2D perovskite seed for epitaxial growth of 3D perovskite atop it, to construct a high-quality 2D/3D heterojunction. 

It was reportedly found that the epitaxial 3D perovskite film exhibited a preferred direction, which is different from traditional perovskites with a preferred orientation. The oriented perovskite film consists of large-sized grains with low defect density, long charge-carrier lifetime and good stability, resulting in efficient PSCs with a champion efficiency of 24.83%. 

Read the full story Posted: Mar 23,2023

New project by Dutch-German consortium to develop simplified tandem solar modules for European market

TNO, in cooperation with Dutch and German industrial partners, is advancing a perovskite/silicon tandem solar module suitable for early market introduction. 

FIT4Market, a four-year research project supported by the Netherlands Enterprise Agency (RVO), will help drive CO2 reduction through to 2030, supporting national climate objectives. It is also a step towards bringing PV production back to Europe and rebuilding a competitive PV supply chain.

Read the full story Posted: Mar 21,2023

UCLA and Midsummer develop perovskite-CIGS tandem solar cells with 24.9% efficiency

University of California, Los Angeles (UCLA) researchers have joined forces with Swedish building-integrated PV (BIPV) module manufacturer, Midsummer, on a project that has yielded a four-terminal (4T) tandem solar cell based on a top cell made of perovskite and a bottom cell relying on copper, indium, gallium and selenium (CIGS).

The joint project between Midsummer and Prof. Yang's lab at UCLA resulted in a four-terminal perovskite-CIGS tandem solar cell, based on a commercial CIGS solar cell,  that reached 24.9 percent efficiency. The solar cell was based on a perovskite top cell that has been optimized for integration with Midsummer’s CIGS cells that are utilized in their commercial suite of BIPV products.

Read the full story Posted: Mar 20,2023

CEA-INES and Enel Green Power reach 26.5% efficiency for tandem perovskite-silicon solar cell

Researchers at France's National Solar Energy Institute (INES) – a division of the French Alternative Energies and Atomic Energy Commission (CEA) – and Italian renewables specialist Enel Green Power have reportedly developed a two-terminal tandem perovskite-silicon solar cell with a power conversion efficiency of 26.5%. 

The scientists said the new result improves on the 25.8% efficiency they achieved for the same kind of cell in December 2022. “The device with an active area of 9 cm² has an open-circuit voltage above 1,880 mV,” CEA-INES said, noting that the improvement on the device, which is based on a p-i-n configuration, was also due to “shading correction.” No additional technical details were disclosed.

Read the full story Posted: Mar 18,2023