Transistors - Page 3

Korean researchers win UDC's Innovative Research and Pioneering Technology Award for perovskite transistors study

Researchers from Pohang University of Science and Technology in Korea have received Universal Display Corporation's 2020 Innovative Research and Pioneering Technology Award in Organic Electronics & Display, for their work 'High-Performance and Reliable Lead-Free Layered-Perovskite Transistors'. Universal Display (UDC) is a large OLED research company, considered to be a pioneer in field.

In their work, the scientists explain that despite extensive examination of perovskites' potential use in solar cells and light'emitting diodes, research on their applications in thin'film transistors (TFTs) has drawn less attention despite their high intrinsic charge carrier mobility. In this study, the universal approaches for high'performance and reliable p'channel lead'free phenethylammonium tin iodide TFTs are reported.

Read the full story Posted: Aug 25,2020

Researchers discover that adding a certain molecule to the mix can give perovskites significant stability

A Purdue University-led research team discovered that adding a rigid bulky molecule ' bithiophenylethylammonium ' to the surface of a perovskite stabilizes the movement of ions, preventing chemical bonds from breaking easily. The researchers also demonstrated that adding this molecule makes a perovskite stable enough to form clean atomic junctions with other perovskites, allowing them to stack and integrate.

'If an engineer wanted to combine the best parts about perovskite A with the best parts about perovskite B, that typically can't happen because the perovskites would just mix together,' said Brett Savoie, a Purdue assistant professor of chemical engineering. 'In this case, you really can get the best of A and B in a single material. That is completely unheard of.'

Read the full story Posted: May 05,2020

Berkeley team creates perovskite blue LED and illustrates both limitations and potential of perovskite semiconductors

University of California, Berkeley, scientists have created a blue light-emitting diode (LED) from halide perovskites, overcoming a major barrier to using these cheap, easy-to-make materials in electronic devices.

In the process, however, the researchers discovered a fundamental property of halide perovskites that may prove a barrier to their widespread use as solar cells and transistors. Alternatively, this unique property may open up a whole new world for perovskites far beyond that of today's standard semiconductors.

Read the full story Posted: Jan 26,2020

Duke team modulates the properties of organic semiconducting building blocks incorporated between layers of perovskites

Scientists at Duke University have used their electronic structure based materials modeling software on a supercomputer to help demonstrate the advantages of incorporating organic building blocks into hybrid perovskites.

The models showed that the new materials feature improved stability and safety while exhibiting a 'quantum well' behavior that can improve the performance of optoelectronic devices such as solar cells, LEDs and optical computers, making the hybrid perovskites more attractive for use in a broad range of applications.

Read the full story Posted: Nov 21,2019

New approach to stabilize pervoskites may push PSCs forward

Researchers at KU Leuven have explained how a promising type of perovskites can be stabilized. The team has developed a process in which the crystals turn black, enabling them to absorb sunlight. This is said to be necessary in order to use them in solar panels.

"Silicon forms a very strong, rigid crystal. If you press on it, it won't change its shape. On the other hand, perovskites are much softer and more malleable," explains Dr. Julian Steele of the KU Leuven Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy for Sustainable Solutions (cMACS). "We can stabilize them under various lab conditions, but at room temperature, the black perovskite atoms really want to reshuffle, change structure, and ultimately turn the crystal yellow".

Read the full story Posted: Jul 28,2019

U.S researchers find new type of electric field effect that controls light emission from perovskite devices

Researchers from Rutgers University, University of Minnesota and University of Texas at Dallas in the U.S have discovered a new type of electric field effect that can control light emission from perovskite devices.

U.S researchers find new type of electric field effect that controls light emission from perovskite devices image

The electric field effect usually refers to the modulation of electrical conductivity in a semiconductor by means of an applied voltage to a gate electrode and forms the basis of modern digital electronics. In a conventional field effect transistor (FET), the conductivity of a semiconductor layer can be turned on or off or gradually ramped up or down. Now, the research team has found that the photoluminescence (PL) of a perovskite device can be modulated in a similar manner. 'Our work reports a novel type of field effect in which PL, rather than conductivity, is tuned by an 'electric knob' ' the gate voltage,' explains Vitaly Podzorov, who led the research.

Read the full story Posted: Feb 17,2019

Researchers create a field-effect transistor using a single-crystal, “paint-on” perovskite

An international team of researchers, led by Aram Amassian at North Carolina State University, has demonstrated the construction of field-effect transistors using a single crystal, hybrid perovskite semiconductor.

Researchers create a field-effect transistor using a single-crystal, 'paint-on' perovskite image

While the design of perovskite solar cells has matured to the point of near-commercialization, making hybrid perovskites function as field-effect transistors has been more of a challenge. This is in part due to the fact that perovskite films typically consist of multiple crystals with random orientations that include grain boundaries and various kinds of defects in their atomic crystal lattices. These often limit how well charge carriers (electrons or 'holes') can move through them.

Read the full story Posted: Jan 17,2019

Researchers integrate single-crystal hybrid perovskites into electronics

An international team of researchers, including ones from KAUST, the Guo China-US Photonics Laboratory, the University of Rochester and the University of New South Wales, has developed a technique that allows single-crystal hybrid perovskite materials to be integrated into electronics. The team stated that this achievement opens the door to new research into flexible electronics and potentially reduced manufacturing costs for electronic devices.

Researchers succeed in integrating single-crystal hybrid perovskites into electronics image

Challenges in integrating single-crystal hybrid perovskites into electronic devices, such as transistors, have spurred much research focus. The main challenge in incorporating single-crystal hybrid perovskites into electronics stems from the fact that these macroscopic crystals, when synthesized using conventional techniques, have rough, irregular edges. This makes it difficult to integrate with other materials in such a way that the materials make the high-quality contacts necessary in electronic devices.

Read the full story Posted: Dec 19,2018

Researchers demonstrate controlled epitaxial growth of all inorganic lead-free halide perovskites

A research team composed of scientists from Michigan State University and University of Michigan has deployed a new approach to growing all inorganic lead-free halide perovskites.

Perovskite quantum wells scheme image

"Epitaxial growth has long since revolutionized the study of many electronic materials including silicon, oxide perovskites, and III-V semiconductors," said Richard Lunt, an Associate Professor at Department of Chemical Engineering and Materials Science, Michigan State University who has supervised the project. "There is very little known about the epitaxial growth of halide perovskites, but these exciting materials hold enormous potential. This has motivated us to explore this entirely new research area."

Read the full story Posted: Apr 02,2018

World's first 2D sheets of organic-inorganic hybrid perovskites grown from a solution

Researchers at the Department of Energy's Lawrence Berkeley National Laboratory have succeeded in growing atomically thin 2D sheets of organic-inorganic hybrid perovskites from a solution. The sheets are claimed to be of high quality and large in area.

The scientists state that this is the first example of 2D atomically thin nanostructures made from ionic materials and that the results of this study open up opportunities for fundamental research on the synthesis and characterization of atomically thin 2D hybrid perovskites and introduce a new family of 2D solution-processed semiconductors for nanoscale optoelectronic devices, such as field effect transistors and photodetectors.

Read the full story Posted: Sep 29,2015