Transistors

New universal passivator system enables high-performance single-junction and tandem perovskite solar cells

Researchers from China's Hebei University of Technology, Fudan University, Fuyang Normal University, Chinese Academy of Sciences (CAS), Macau University of Science and Technology, Kunming University of Science and Technology and France's CNRS have reported an innovative passivation strategy that is said to enable record power conversion rates and enhanced operational longevity of single junction and tandem perovskite solar cells (PSCs).

The team has developed this innovative strategy to address the issue of interfacial trap-assisted nonradiative recombination, which has been known to hinder the performance of perovskite-based photovoltaic technologies. The new passivator is identified as L-valine benzyl ester p-toluenesulfonate (VBETS) and using it under optimal conditions yielded PSCs that achieved a power conversion efficiency (PCE) of 26.28%. 

Read the full story Posted: Jan 17,2025

New surface functionalization method to suppresses halide migration significantly improves PSC durability

Researchers from Northwestern University, Arizona State University, University of Toronto and National University of Singapore have addressed the issue of ion migration, which deteriorates the performance and stability of perovskite solar cells (PSCs). The team has developed a new method to improve the stability and efficiency of PSCs through surface functionalization, which uses a chemical compound called 5-ammonium valeric acid iodide (5-AVAI) to enable the uniform growth of aluminum oxide (Al₂O₃) through atomic layer deposition. This process creates a robust barrier that suppresses halide migration by more than an order of magnitude.

Using this method, the researchers tested solar cells, and found that they retained 90% of their initial power conversion efficiency (PCE) after 1,000 hours of continuous operation at 55 degrees Celsius under full sunlight, compared to less than 200 hours without the barrier layer. 

Read the full story Posted: Jan 11,2025

Researchers use manual screen printing to fabricate stable large-area semi-transparent perovskite solar modules for building-integrated photovoltaics

Researchers from Pakistan's University of Engineering & Technology (UET) and National University of Technology have reported the use of manual screen printing to fabricate semi-transparent, scalable perovskite solar modules without the requirement for numerous laser-scribing steps. 

A carbon-based, hole-transport-layer-free perovskite solar module with a power conversion efficiency of 11.83% was manufactured, with an active area of 900 cm2. Accelerated testing was done in settings with elevated humidity, high sun irradiation, and harsh temperatures to determine whether these modules are ready for the market. 

Read the full story Posted: Jan 10,2025

Researchers explore the combined effect of 2D-3D perovskite layers on the performance of PSCs

Researchers from India's Madan Mohan Malaviya University of Technology, University of Delhi, Manipal University and Sweden's IAAM have combined 2D and 3D perovskites to strengthen both reliability and efficiency of 3D perovskite solar cells (PSCs). 

The team explored the combined effect of Dion-Jacobson (DJ) 2D-3D halide-based perovskites layers on device performance. The DJ 2D material used was PeDAMA4Pb5I16, while the 3D material is the lead-free, stable CsGeI3-xBrx (with x=1). The optimized solar cell structure developed in this work consisted of (Au/Cu2O/PeDAMA4Pb5I16/CsGeI3-xBrx/PCBM/FTO). 

Read the full story Posted: Dec 03,2024

Researchers design multifunctional SnSO oxidant for efficient perovskite solar cells

Perovskite solar cells (PSCs) that incorporate a 2D/3D perovskite layer tend to demonstrate enhanced stability compared to that of their purely 3D counterparts, possibly thanks to the superior chemical stability of the 2D perovskite layer. However, the poor electrical properties of the 2D perovskite layer also limit further improvement of device performance. Moreover, the most effective hole transport layer (HTL) in 2D/3D PSCs, lithium bis(trifluoromethylsulfonyl)imide (Li-TFSI)-doped 2,2′,7,7′-tetrakis(N,N-di(4-methoxyphenyl)amino)-9,9-spirobifluorene (spiro-OMeTAD), usually needs prolonged exposure to air to improve its conductivity, which to some extent increases the risk of water/oxygen infiltrating into the perovskite layer, leading to the degradation of the perovskite active layer.

Researchers at China's Henan University and Chinese Academy of Sciences (CAS) have developed a multifunctional dopant, tin oxysulfide (SnSO) in the spiro-OMeTAD layer, to improve the efficiency and stability simultaneously.

Read the full story Posted: Oct 30,2024

TCI launches Phenylethylamine Hydroiodides materials to increase the stability of perovskite solar panels

Tokyo Chemical Industry (TCI), a global supplier of laboratory chemicals and specialty materials, is now offering Phenylethylamine Hydroiodides materials, used for surface treatment of perovskite layers in solar panels. These materials improve the stability of the solar panels.

Research has shown that by applying the Phenylethylamine Hydroiodides materials, one can expect improved stability of over 90%. In one research, the 1,2-Benzenediethanamine Dihydroiodide was applied to a perovskite PV device (FTO/TiO2/SnO2/perovskite/Amine Iodide/Spiro-OMeTAD/Au), and achieved an increase in stability of over 90% after 1,100 hours. See here for more info.

Read the full story Posted: Oct 21,2024

Researchers use ultrastable and efficient 2D Dion-Jacobson perovskite for solar cell with 19.11% efficiency

Researchers from China's National Center for Nanoscience and Technology, Chinese Academy of Sciences (CAS) and Beihang University have demonstrated a series of ultrastable Dion−Jacobson (DJ) perovskites for photovoltaic applications. They went on to develop a 2D Dion-Jacobson (DJ) perovskite solar cell that showed high stability while achieving a power conversion efficiency of 19.11%.

Schematic illustration of the blade-coating film and the corresponding device configuration under atmospheric environment at room temperature. Image credit: Nature Communications 

Two-dimensional (2D) Dion-Jacobson (DJ) phase perovskites have drawn attention from academia due to their stability against harsh environmental conditions and their competitive performance in optoelectronic applications. Solar cells based on DJ perovskites, however, have so far shown comparatively poor performance compared to their 3D counterparts.

Read the full story Posted: Aug 02,2024

Researchers develop stable n–i–p monolithic perovskite/silicon tandem solar cells with over 29% efficiency, based on double-sided poly-Si/SiO2 passivating contact silicon cells

The majority of monolithic perovskite/Si tandem solar cells (TSCs) have been built on heterojunction (HJT) Si solar cells, which have seen limited industrial uptake due to manufacturing cost and concern over the viability of metal electrodes and transparent conductive oxides (TCOs) incorporating expensive elements. Recently, researchers from The Australian National University, University of Melbourne and University of New South Wales demonstrated that high efficiencies of perovskite/Si TSCs can be achieved with Si bottom cells based on a double-side poly-Si/Si dioxide (SiO2) passivating contact (poly-Si cell) without silver or transparent conductive oxides (TCOs), fabricated using mass-production techniques. 

In addition, a novel low-absorption, dopant-free bilayer-structured hole transport layer (HTL) composed of ultra-thin poly(N,N′-bis-4-butylphenyl-N,N′-bisphenyl)benzidine (Poly-TPD) and 2,2′,7,7′-tetra(N,N-di-p-tolyl)amino-9,9-spirobifluorene (Spiro-TTB) double layers was developed for the perovskite top cell, which passivates the perovskite surface and enhances the near-interface conductivity, thus increasing the open-circuit voltage and fill factor. 

Read the full story Posted: Jul 25,2024

Researchers show how inner doping of CNTs with perovskites can yield ultralow power transistors

As silicon-based transistors approach their limits, researchers are exploring alternative materials to continue progress in semiconductor technology. Carbon nanotubes (CNTs) are considered promising candidates for next-generation electronics due to their exceptional electrical properties and nanoscale dimensions. Yet, the challenge of precisely controlling the electronic characteristics of CNTs has hindered their widespread adoption in practical applications.

Researchers at China's Peking University, Zhejiang University and Chinese Academy of Science (CAS) have developed an inner doping method by filling CNTs with 1D halide perovskites to form a coaxial heterojunction, which enables a stable n-type field-effect transistor for constructing complementary metal–oxide–semiconductor electronics.

Read the full story Posted: Jul 15,2024

Researchers set efficiency record for stable multipodal self-assembled molecule-based perovskite solar cell

Researchers at the Chinese Academy of Sciences (CAS), in collaboration with Japan's Yamagata University, developed three isomeric bisphosphonate-anchored self-assembled molecules (SAMs) to achieve highly efficient and stable inverted perovskite solar cells (PSCs).

The wettability, absorbability and compactness of SAMs, which are used as hole-transporting layers (HTLs) for PSCs, critically affect the efficiency and stability of the devices. Therefore, the researchers proposed a molecular strategy to synthesize three bisphosphonate-anchored indolocarbazole (IDCz)-derived SAMs, namely IDCz-1, IDCz-2, and IDCz-3. The three SAMs with different positions of the two nitrogen atoms in the IDCz unit were each employed on conductive oxide substrates for inverted PSCs.

Read the full story Posted: May 30,2024