Technical / research - Page 61

Researchers manage to design perovskite field-effect transistors by ion transport mitigation

Researchers from the UK's University of Bath and Germany's Max Planck Institute for Polymer Research have developed a way to make perovskite-based components for low-cost electronics.

The physicists have found a way to make perovskite-based transistors, while overcoming the problem of the material's ion content interfering with the flow of electronic current through a transistor. This breakthrough may pave the way for research into greener electronic components for low-cost electronic devices.

Read the full story Posted: Aug 18,2021

Tip-induced strain engineering of single metal halide perovskite quantum dots

A joint research team, affiliated with Korea's UNIST, has developed a novel method capable of controlling the brightness and wavelength of quantum dots (QDs). The work was led by Professor Kyoung-Duck Park in the Department of Physics at UNIST, in collaboration with Professor Sohee Jeong in the Department of Energy Science from Sungkyunkwan University (SKKU).

The research team demonstrated the tip-induced dynamic control of strain, bandgap, and quantum yield of single CsPbBrxI3'x pQDs by using a controllable plasmonic nanocavity combined with tip-enhanced photoluminescence (TEPL) spectroscopy.

Read the full story Posted: Aug 13,2021

Researchers use double-layer CsI intercalation into an MAPbI3 framework to achieve efficient and stable perovskite solar cells

Researchers from Kanazawa University in Japan have found that the addition of cesium iodide can improve the stability and efficiency of certain perovskite solar cells. Added to MAPbI3 cells by alternately depositing thin layers of MAPbI3 and CsI, atoms from Cs migrate and become intercalated into the crystal lattice.

'Our approach allowed us to produce layers with precise control over the CsI intercalation,' said researcher Tetsuya Taima. Using this control, different Cs-inclusive perovskite crystals were created.

Read the full story Posted: Aug 06,2021

Researchers achieve 30% efficiency bifacial 4-terminal perovskite-silicon tandem solar cells with spectral albedo

Researchers from Korea and Vietnam have developed and designed a bifacial four-terminal perovskite/crystalline silicon heterojunction tandem solar cell configuration albedo reflection in which the c-Si HJ bottom sub-cell absorbs the solar spectrum from both the front and rear sides (reflected light from the background such as green grass, white sand, red brick, roofing shingle, snow, etc.).

This approach reportedly achieved an outstanding conversion efficiency exceeding 30%, higher than those of both the top and bottom sub-cells. Notably, this efficiency is also greater than the Schockley'Quiesser limit of the c-Si solar cell (approximately 29.43%). The proposed approach has the potential to lower industrial solar cell production costs in the near future.

Read the full story Posted: Aug 01,2021

Researchers use improved gas quenching technique for highly efficient perovskite solar cells

A team of researchers, led by the University of Sydney, have used a new approach that could be the key to producing low cost and environmentally friendly perovskite solar cells, while achieving a new efficiency milestone for these cells.

The researchers said they had made crucial improvements to the process of 'gas quenching' to fabricate perovskite thin films. The research team successfully demonstrated a steady-state conversion efficiency of 23.6%, which they claim is the highest efficiency achieved for perovskite solar cells produced using the 'gas quenching' technique.

Read the full story Posted: Jul 27,2021

Photonic Curing to speed up production of perovskite solar cells

University of Texas at Dallas researchers, led by Dr. Julia Hsu, have shown that a technique called photonic curing can be used to manufacture perovskite solar cells faster than other current methods.

Hsu's research aims to solve a problem that has impeded large-scale manufacturing of flexible electronics and solar panels: the need to reduce the amount of time for the slowest part of production, called annealing. In this stage, the thin film must be heated to high temperatures, a step that can sometimes take hours and make production costly.

Read the full story Posted: Jul 23,2021

EPFL team addresses the lead issue of perovskite solar cells

A team of scientists at EPFL has come up with an efficient solution to the lead problem of perovskite solar cells, which involves using a transparent phosphate salt that does not block solar light and hence doesn't affect performance.

Removing the lead hazard from perovskite solar cells image

In case the solar panel fails, the phosphate salt immediately reacts with lead to produce a water-insoluble compound that cannot leach out to the soil, and which can be recycled.

Read the full story Posted: Jul 16,2021

New printing process could make for lighter and more efficient perovskite solar cells

University of Arizona scientists have developed a new printing process called Restricted Area Printing by Ink Drawing, or RAPID, and received a three-year, $700,000 grant from the Department of Energy Solar Energy Technologies Office (SETO) to advance the method.

Adam Printz, an assistant professor of chemical and environmental engineering at the University of Arizona, along with his team, started developing the perovskite printing process in late 2019, and they've been able to demonstrate on a small scale with 3D-printed parts how it works ' using 'whatever they had lying around in the lab.' This funding enables them to create a more reproducible and scalable version.

Read the full story Posted: Jul 14,2021

Researchers design stable inverted perovskite solar cells with 22.1% efficiency using a star-shaped polymer

Researchers at the Swiss Federal Institute of Technology in Lausanne (EPFL) and Northwestern Polytechnical University in China have fabricated an inverted perovskite solar cell based on a star-shaped polymer that can reportedly improve charge transport and inhibit ion migration at the perovskite interface.

Inverted perovskite solar cell with 22.1% efficiency via star-shaped polymer imageSchematic diagram of the interaction between the PPP polymer (partial 3D structure) and perovskite. Image from ScienceAdvances

The cell has a 'p-i-n' layout and is based on a perovskite material known as CsMAFA modified with a polymer called polyhedral oligomeric silsesquioxane-poly(trifluoroethyl methacrylate)-b-poly(methyl methacrylate) or simply PPP polymer.

Read the full story Posted: Jul 13,2021

Researchers see microfluidic processing as a pathway to producing flexible printed solar cells on an industrial scale

Researchers at the ARC Centre of Excellence in Exciton Science have identified a way to create Nickel oxide (NiO) films of sufficient quality in solution and at relatively low temperatures of less than 150 degrees Celsius.

NiO is used as an inexpensive hole-transport layer in perovskite solar cells because of its favorable optical properties and long-term stability. However, making high-quality NiO films for solar cells usually requires an energy intensive and high-temperature treatment process called thermal annealing, which is not only costly, but also incompatible with plastic substrates, until now precluding the use of NiO in the proposed manufacture of printed photovoltaics at commercial scale.

Read the full story Posted: Jul 12,2021