Perovskite Solar - Page 42

Researchers design efficient perovskite solar cell with Mortise-Tenon structure

Researchers from Nanjing Tech University, Wuhan University of Technology and National University of Singapore set out to address two major issues that should be resolved in order to promote perovskite solar cells (PSCs): disorder crystallization of perovskite and unbalanced interface charge extraction, which limit further improvements in device efficiency. 

The team used a thermally polymerized additive N-vinyl-2-pyrrolidone (NVP) as a polymer template in the perovskite film, followed by a conventional HTL/Chlorobenzene (CB) solution spin-coating process to remove the residual miscellaneous phases and open the grain boundaries to form monolithic perovskite grains, thereby suppressing the defect-related non-radiative recombination. Furthermore, this process results in the formation of a novel “Mortise-Tenon” (M-T) structure for perovskite/HTL composite film, which provides a larger contact area between perovskite and HTL, thereby facilitating hole extraction to achieve balanced charge management. 

Read the full story Posted: Jun 07,2023

Fraunhofer ISE launches two new projects to support the scale-up of perovskite-silicon tandem solar cells

Perovskite-silicon tandem solar cells promise efficiencies of over 30 percent, and it seems that new world efficiency values are reached in an increasing pace. These world records, however, are realized on areas that are about 400 times smaller than the current wafer size of a typical industrial silicon solar cell. Scalability remains a challenge that many solar researchers are trying to overcome, hoping to find promising routes for the scalable and economical production of such solar cells. 

In the recently launched research projects "Pero-Si-SCALE" and "LiverPool", funded by the German Federal Ministry for Economic Affairs and Climate Action, the Fraunhofer Institute for Solar Energy Systems ISE is building an independent technology platform for scaling up perovskite-silicon tandem solar cells and modules. The goal is the further development and analysis of cell and module designs as well as manufacturing processes which make a rapid transfer to industry possible.

Read the full story Posted: Jun 07,2023

Researchers demonstrate laser-driven control of fundamental motions of the lead halide perovskite atomic lattice

An international team of scientists from Fritz Haber Institute of the Max Planck Society, École Polytechnique in Paris, Columbia University in New York, and the Free University in Berlin have demonstrated laser-driven control of fundamental motions of the lead halide perovskite (LHP) atomic lattice.

Sketch of the experimental pump-probe configuration. Image from Science Advances

By applying a sudden electric field spike faster than a trillionth of a second (picosecond) in the form of a single light cycle of far-infrared Terahertz radiation, the team unveiled the ultrafast lattice response, which might contribute to a dynamic protection mechanism for electric charges. This precise control over the atomic twist motions could allow to create novel non-equilibrium material properties, potentially providing hints for designing the solar cell material of the future.

Read the full story Posted: Jun 06,2023

Microquanta and Xiaer Tela enter agreement to develop perovskite floating PV applications

Perovskite solar developer Microquanta and Xiaer Tela, a company specializing in floating PV applications, recently signed a strategic cooperation agreement to develop water surface perovskite applications and various floating solar products. 

The Companies will jointly develop perovskite PV related products and power generation systems suitable for inland and offshore floating, and provide full-cycle support and services.

Read the full story Posted: Jun 05,2023

LONGi announces perovskite/crystalline silicon tandem solar cells with 31.8% efficiency

It was reported that on May 24, at the 16th (2023) International Solar Photovoltaic and Smart Energy (Shanghai) Exhibition (SNEC), LONGi Green Energy Technology announced its “STAR Innovative Ecological Cooperation Platform” and its newly achieved efficiency of 31.8% for perovskite/crystalline silicon tandem solar cells based on commercial CZ silicon wafers.

The German Fraunhofer Institute for Solar Energy Systems (Fraunhofer ISE) reportedly certified LONGi's conversion efficiency of 31.8% for perovskite/crystalline silicon tandem solar cells based on commercial CZ silicon wafers. This was said to be the highest internationally certified conversion efficiency based on the superposition of perovskite on commercial CZ silicon wafers.

Read the full story Posted: Jun 03,2023

FuturaSun acquires perovskite solar startup Solertix

Italian solar company, FuturaSun, has acquired Solertix, a start-up specialized in perovskite solar cell research and upscaling for industrial applications.

This acquisition represents a major investment for FuturaSun in scientific research and in the development of innovative technologies. Alessandro Barin, CEO of FuturaSun, emphasizes the strategic importance of this step, stating, “Perovskite is the future of high-efficiency photovoltaics, and in this specific R&D segment, we couldn’t afford not to be key players, working alongside those who are dedicated to scientific research at the highest academic levels.”

Read the full story Posted: Jun 01,2023

DoE funded project will use PSCs to produce green hydrogen

A Department of Energy (DoE) project, lead by University of Michigan's Prof. Zetian Mi, is using perovskites to develop high efficiency, low cost, and ultrastable production of green hydrogen fuels directly from sunlight and water.

The new method to achieve clean hydrogen through solar water splitting offers a promising path to achieving net-zero carbon emissions. The University of Michigan research team aims to stabilize perovskite-based solar cells to produce highly-efficient, low-cost, ultrastable green hydrogen fuel.

Read the full story Posted: Jun 01,2023

New strategy based on bis-diazirine (BD) molecules enables stable and efficient perovskite solar cells

Researchers from China's Fudan University, Central South University, East China Normal University, Chinese Academy of Sciences and Suzhou University of Science and Technology, along with Canada's University of Victoria and Austria's University of Vienna, have proposed a novel strategy to achieve efficient and stable perovskite solar cells (PSCs) through introducing bis-diazirine molecules to immobilize the organic cations by covalent bonds.

The resulting PSCs exhibited a high certified efficiency of over 24% with long operational stability of over 1,000 hours. The scientists believe that this strategy also possesses great potential in other perovskite-based optoelectronic devices. 

Read the full story Posted: May 31,2023