Perovskite materials - Page 3

Researchers design transport layers that decouple perovskite thickness from efficiency limitations

Researchers at Germany's Forschungszentrum Jülich have reported a method to fabricate >1-micrometer thick perovskite films by employing hole-transporting bilayers of self-assembled monolayers (SAMs) and poly[bis(4-phenyl) (2,4,6-trimethylphenyl)amine] (PTAA). Recognizing the critical role transport layers play in exacerbating thickness-dependent losses, the team optimized a dual-layer hole transport architecture to reduce resistive losses and recombination. The authors achieved remarkable efficiency retention at over 1 micron thickness.

This work focuses on a solar cell architecture that decouples thickness from efficiency limitations. By sandwiching specialty organic films around the perovskite layer, the authors enabled micron-scale thicknesses without forfeiting peak performance. Their design notably achieves a remarkable 20.2% efficiency at over 1 micron thickness with minimal losses compared to thinner versions.

Read the full story Posted: Dec 27,2023

Researchers study the origin of the photovoltaic effect in organic–inorganic perovskites

A team led by RIKEN researchers recently investigated how certain perovskite materials convert light into electricity. Their findings could hel improve their efficiency and use in solar cells.

Solar cells convert light into electricity by a phenomenon known as the photovoltaic effect. The vast majority of solar cells consist of two semiconductors put together—one with an excess of electrons and the other being electron deficient. This is because the setup has a high conversion efficiency. But another photovoltaic effect has also been attracting attention—the bulk photovoltaic effect, so called because it only involves a single material. While its conversion efficiency is currently rather low, recent research has suggested ways for improving its efficiency.

Read the full story Posted: Dec 26,2023

Researchers explore conduction mechanisms in a unique perovskite oxide

Researchers at the Tokyo Institute of Technology (Tokyo Tech), in collaboration with Tohoku University, Australian Nuclear Science and Technology Organization (ANSTO) and the High Energy Accelerator Research Organization (KEK), recently investigated a promising material for next-generation electrochemical devices: hexagonal perovskite-related oxide Ba7Nb3.8Mo1.2O20.1. The team unveiled the material's unique ion-transport mechanisms, that could pave the way for better dual-ion conductors.

Clean energy technologies are the cornerstone of sustainable societies, and solid-oxide fuel cells (SOFCs) and proton ceramic fuel cells (PCFCs) are among the most promising types of electrochemical devices for green power generation. These devices, however, still face challenges that hinder their development and adoption.

Read the full story Posted: Dec 12,2023

Researchers look inside the crystal structure of perovskite nanocrystals

A team of researchers, led by Nuri Yazdani, Vanessa Wood at ETH Zurich, and Aaron Lindenberg at Stanford, along with colleagues at Empa, recently studied atom motion within nanocrystals with a time resolution in the range of billionths of a second. 

The scientists managed to capture snapshots of the crystal structure of perovskite nanocrystals as excited electrons deformed it. They surprisingly found that the deformation straightened out the skewed crystal structure rather than making it more disordered.

Read the full story Posted: Dec 06,2023

TCI offers a stable low-cost supply of high-quality Spiro-OMeTAD materials for perovskite developers

Tokyo Chemical Industry (TCI), a global supplier of laboratory chemicals and specialty materials, is offering a stable supply of high-quality Spiro-OMeTAD hole transport materials, used in perovskite solar panels, light emitting devices and other applications.

Spiro-OMeTAD materials are suitable for solution processing, and feature a HOMO of -5.0 eV and a LUMO of -1.5 eV. This is a standard material used in many perovskite stacks, and is the benchmark material also used in many research activities for comparative evaluation.

 TCI has a large-scale capacity to produce this material, in very high quality and at a relatively low cost. See here for more info

Read the full story Posted: Nov 15,2023

New project backed by $3 million to boost perovskite solar manufacturing

A new project, led by the University of Michigan, could enable industrial competitors to collectively build a predictive model that speeds the development of perovskite solar cells. The aim is to improve upon the process of layer-by-layer deposition of semiconductor materials during production with an information-sharing approach that boosts cooperation between companies while protecting proprietary information and worker interests.

The project is backed by a four-year, $3 million grant from the National Science Foundation and includes partners at the University of California San Diego.

Read the full story Posted: Nov 15,2023

Researchers develop hydrogen-bonding-facilitated dimethylammonium extraction strategy for improved perovskite solar cells

Researchers at the Chinese Academy of Sciences (CAS), Beijing Normal University, Beijing Institute of Technology and ShanghaiTech University have developed a universal hydrogen-bonding-facilitated DMA extraction method to fabricate high-quality γ-CsPbI3 films. The researchers fabricated a solar cell based on cesium-lead iodide (CsPbI3) perovskite, which is also known as black perovskite.

The black perovskite solar cell reportedly achieved  20.25% efficiency, which is said by the team to be the highest efficiency reported for PV devices built with this perovskite material and a dopant-free hole transport layer based on the P3HT polymer. The cell was also able to retain around 93% of its original efficiency after continuous illumination for 570 h.

Read the full story Posted: Nov 10,2023

Researchers report light guide plate based on perovskite nanocomposites

Perovskite nanocrystals (PNCs)/polymer nanocomposites can combine the advantages of both materials, but achieving the fabrication of PNCs/polymer nanocomposites by bulk polymerization has proven Very challenging. A team of scientists, led by Professor Bai Yang from Jilin University in China, has adopted a a two-type ligand strategy to fabricate bulk PNCs/polystyrene (PS) nanocomposites, including a new type of synthetic polymerizable ligand.

The CsPbCl3 PNCs/PS nanocomposites reportedly showed extremely high transparency that can be ascribed to the Rayleigh scattering as the PNCs distribute uniformly without obvious aggregation. Based on this behavior, the team first exploited the potential of PNCs to serve as scatters inside light guided plate (LGP), whose surface illuminance and uniformity can be improved, and this new kind of LGP is compatible with advanced liquid crystal display technology. 

Read the full story Posted: Nov 04,2023

Researchers develop improved method for 2D perovskite crystals via progressive transformation of quantum well thickness

A research team, led by Rice University chemical and biomolecular engineer Aditya Mohite and collaborators at Northwestern University, the University of Pennsylvania and the University of Rennes, reported a process that yields 2D perovskite-based semiconductor layers of ideal thickness and purity by controlling the temperature and duration of the crystallization process.

Known as kinetically controlled space confinement, the process could help improve the stability and reduce the cost of halide perovskite-based emerging technologies like optoelectronics and photovoltaics.

Read the full story Posted: Oct 28,2023

Perovskite material to promote superior detectors for X-rays at large synchrotron facilities

A team of scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory and their colleagues have demonstrated exceptional performance of a new material for detecting high energy X-ray scattering patterns. With excellent endurance under ultra-high X-ray flux and relatively low cost, the detector material may find wide application in synchrotron-based X-ray research.

Recent advancements in X-ray technology enable brighter, more intense beams and imaging of increasingly intricate systems in real-world conditions. To support these advancements, scientists are working to develop X-ray detector materials that can withstand bright, high-energy X-rays — especially those from large X-ray synchrotrons — while maintaining sensitivity and cost-effectiveness.

Read the full story Posted: Oct 01,2023