Efficiency - Page 35

Unique ETL enables efficient flexible perovskite solar cells

A group of scientists, led by Prof. Yiqiang Zhan from Fudan University, has reported high-efficiency flexible perovskite solar cells (f-PSCs) by annealing a SnO2 ETL in a rough vacuum at a low temperature (100 '), and peak efficiency reached 20.14%.

SnO2 layers that have been prepared by this method have shown higher robustness and hydrophobicity in comparison with samples prepared in an air atmosphere and temperatures of 100 °C, leading to an improved ETL/perovskite interface connection and reducing defects in the SnO2/perovskite interface. The appropriate density of oxygen vacancies on the surface during this treatment can be responsible for higher conductivity, which is beneficial for charge transfer.

Read the full story Posted: Nov 21,2021

A visit to Cyprus University of Technology’s MEP research lab

In October 2021, The Perovskite-Info team met Cyprus University of Technology's (CUT) Professor Stelios Choulis, who kindly agreed to show us around his workspace and labs and update us on his team's ongoing work.

Cyprus University of Technology's MEP research lab - elements cabinet photo

Choulis, Professor of Material Science and Engineering at the Cyprus University of Technology, is also the founder and head of the Molecular Electronics and Photonics (MEP) Research Unit. With work in UK, Germany and the Silicon Valley (USA) under his belt, Choulis is a highly skilled and experienced researcher in the fields of both photovoltaics and OLEDs. He also participated and led several large-scale research programs (ERC-Consolidator Grant European Horizon project, SME-EU FP7, RIF and RPF-Cyprus, BMBF-Germany, DOE-USA).

Read the full story Posted: Nov 11,2021

New isomer passivation method could yield efficient and stable perovskite solar cells

An international team of researchers recently tested a new way of passivating defects in perovskite solar cells. Using a tailored arrangement of atoms, the team managed to overcome challenges related to the formation of a two-dimensional perovskite layer on top of the active cell material, and reach 21.4% conversion efficiency for a 26cm2 active area, which is said to be a record for a perovskite device of this size.

Passivation layers, deposited on top of the perovskite material, play an essential role in reducing material defects and unwanted reactions within the material, to improve both performance and stability. One strategy that has been found effective is the use of alkylammonium halides. In many cases these form an additional two-dimensional perovskite layer on top of the perovskite, which can improve device stability but also negatively affect performance.

Read the full story Posted: Nov 10,2021

Researchers could simplify PSC scale-up through vapor-based deposition techniques and laser scribed interconnection

Scientists in Germany's Karlsruhe Institute of Technology (KIT) have applied vapor-based deposition techniques and laser scribed interconnection (well established processes in existing thin-film solar manufacturing) to fabricate perovskite mini modules which achieved a maximum efficiency of 18% for a device measuring 4cm2.

Perovskite solar module fabrication based on a potential inline manufacturing process image

The team believes that based on these processes, it would be possible to simplify processing and reduce losses associated with scaling up to commercial-sized devices.

Read the full story Posted: Nov 09,2021

Solliance reports two new records for 4T perovskite tandems

Solliance recently announced that a collaboration with the M2N group of René Janssen at University of Technology Eindhoven has resulted in two world-records for 4T perovskite tandems.

The partners reported that they further optimized the wide-bandgap (1.69eV) perovskite cells with high near-infrared transparency for 4T tandem applications. The perovskite cell has reached a stabilized efficiency of 17.8% during 5-min maximum-power-point tracking. In combination with the Panasonic silicon bottom cell, a new world-record 4T perovskite/Si tandem efficiency of 29.2% was realized.

Read the full story Posted: Nov 01,2021

Researchers achieve record efficiency of 25.8% for single junction perovskite solar cell

Researchers at South Korea's Ulsan National Institute of Science and Technology (UNIST) and Pohang University of Science and Technology report a power conversion efficiency of 25.8% for a single junction perovskite solar cell, by forming a coherent interlayer between electron-transporting and perovskite layers to reduce interfacial defects.

The cell was built with an interlayer between a tin(IV) oxide (SnO2) electron-transporting layer and a layer made of a halide perovskite layer by coupling chlorine-bonded SnO2 with a perovskite precursor containing chlorine. 'This interlayer has atomically coherent features which enhance charge extraction and transport from the perovskite layer; and fewer interfacial defects,' the academics explained.

Read the full story Posted: Oct 25,2021

The DoE awards $1.25 million to perovskite research projects, issues an RFI for perovskite efficiency targets

The US Department of Energy (DoE) awarded nearly $40 Million for grid-decarbonizing solar technologies projects. The DoE awarded the funds to 40 research projects, several of which are perovskite related. We'll list the perovskite projects (which were awarded a total of $1.25 million) below.

The DoE also issued a request for information (RFI) to gather input on efficiency, stability and replicability performance targets for perovskite photovoltaic devices that could be utilized to demonstrate technical and commercial readiness for future funding programs.

Read the full story Posted: Oct 20,2021

Researchers show all-inorganic halide perovskites to be highly promising for efficient solar cells

Researchers at UC Santa Barbara recently conducted a research that disproved the common belief that organic molecules are crucial to achieving PSCs' impressive performance because they suppress defect-assisted carrier recombination. Not only was this assumption shown to be incorrect, but the team also found that all-inorganic materials have the potential for outperforming hybrid perovskites.

“To compare the materials, we performed comprehensive simulations of the recombination mechanisms,” explained Xie Zhang, lead researcher on the study. “When light shines on a solar-cell material, the photo-generated carriers generate a current; recombination at defects destroys some of those carriers and hence lowers the efficiency. Defects thus act as efficiency killers.”

Read the full story Posted: Oct 16,2021

Researchers report positive results from tests with low-cost fluorene-xantene-based HTM

Researchers at the University of Rome Tor Vergata's Centre for Hybrid and Organic Solar Energy (CHOSE) and ISM-CNR have tested a commercially available HTM with a new core made by low-cost fluorene'xantene units. The experimentation was conducted on small (0.09 cm2) and large area (1.01 cm2) cells.

The one-pot synthesis of this compound is said to drastically reduce its cost compared with the commonly used Spiro-OMeTAD. The optoelectronic performances and properties were characterized through JV measurement, IPCE (incident photon to current efficiency), steady-state photoluminescence and ISOS stability test. SEM (scanning electron microscope) images reveal a uniform and pinhole free coverage of the X55 HTM surface, which reduces the charge recombination losses and improves the device performance relatively to Spiro-OMeTAD from 16% to 17%. The ISOS-D-1 stability test on large area cells without any encapsulation reports an efficiency drop of about 15% after 1000 h compared to 30% for the reference case.

Read the full story Posted: Oct 09,2021