Researchers focus on the presence of residual lead iodide phase in perovskite films as a way to improve photostability and hysteresis
Researchers from the Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Germany's University of Potsdam and The Chinese University of Hong Kong have addressed an important aspect in the field of perovskite solar cells (PSCs) – the exact role of excess lead iodide content within the perovskite layer. While an optimal amount of excess lead iodide contributes to improved grain boundary passivation and blocking of minority charge carriers, leading to the development of highly efficient PSCs, the photo-stability of PSCs with surplus lead iodide remains a major concern. This concern stems from the catalytic role excess lead iodide can play in the degradation of PSCs under illumination.
The issue often arises during the fabrication of perovskite films using a two-step spin coating method, where the conversion of lead iodide films to perovskite is hindered due to challenges in controlling the reaction between lead iodide films and cationic precursor solutions. Various modifications of the two-step approach are presented in the literature, each aiming to achieve a near full conversion of lead iodide films into perovskite when exposed to cationic precursor solutions.