A new study by HZB, Delft University of Technology, University of Potsdam, Yale University, Czech Academy of Sciences, NIST, University of Würzburg, Nihon University, Oregon State University, University of Warwick, Drexel University and University of California Irvine shows how terahertz (TRTS) and microwave spectroscopy (TRMC) can be used to reliably determine the mobility and lifetime of the charge carriers in semiconducting materials.
Using these measurement data it is possible to predict the potential efficiency of the solar cell in advance and to classify the losses in the finished cell.
"We wanted to get to the bottom of these differences, and contacted experts from a total of 15 international laboratories to analyze typical sources of error and problems with the measurements," says Dr. Hannes Hempel from the HZB team led by Dr. Thomas Unold. The HZB physicists sent reference samples produced by the team of Dr. Martin Stolterfoht at University Potsdam to each laboratory with the perovskite semiconductor compound (Cs,FA,MA)Pb(I,Br)3) optimized for stability.
One result of the joint work is the significantly more precise determination of the transport properties with terahertz or microwave spectroscopy. "We could identify some neuralgic points that have to be considered before the actual measurements takes place, which allows us to arrive at significantly better agreement of the results," Hempel explains.
Another result of the study is that with reliable measurement data and a more advanced analysis, the characteristics of the solar cell can also be calculated more precisely. "We believe that this analysis is of great interest for photovoltaic research, because it predicts the maximum possible efficiency of the material in a solar cell and reveals the influence of various loss mechanisms, such as transport barriers," says Unold. This applies not only to the material class of perovskite semiconductors, but also to other new semiconducting materials, which can thus be tested more quickly for their potential suitability.