Perovskite Solar - Page 22
Energy America partners with German manufacturer to introduce perovskite solar cell technology to product line
Energy America, a leading solar module manufacturer based in the USA, has announced a new partnership with a German manufacturing and R&D station to incorporate perovskite solar cell (PSC) technology into their product line. This move is expected to significantly increase the power and efficiency of Energy America's solar cells, while also promoting sustainable energy solutions.
By partnering with a German manufacturer and R&D station, Energy America is taking a major step towards incorporating this cutting-edge technology into their product line. While the manufacturing and research for the PSCs will be done in Germany, Energy America has made it clear that all module design will be performed in America. This partnership not only benefits Energy America, but also strengthens the relationship between the USA and Germany in the renewable energy sector.
Researchers use multifunctional hole transporting material to realize efficient and stable perovskite solar cells
Researchers at China's Tsinghua University, Zurich University of Applied Sciences and University of Ferrara have developed a perovskite solar cell with a new hole transport material that promises enhanced efficiency and stability while also ensuring a scalable fabrication technique.
The team explained that the new organic hole-transporting material, named T2, offers a performance advantage over conventional materials like spiro-OMeTAD as its characteristics, including unique electronic, structural, and chemical properties, synergistically enhance the efficiency of hole extraction and significantly reduce charge recombination at the interface with the perovskite layer.
Researchers find ion-induced field screening to be a dominant factor in the operational stability of perovskite solar cells
Researchers at the University of Potsdam, Humboldt-University of Berlin, University of Wuppertal, Swansea University, University of Oxford, East China University of Science and Technology, Friedrich-Alexander-University Erlangen-Nürnberg and HZB have shown that ion-induced field screening is a dominant factor in the operational stability of perovskite solar cells (PSCS).
The rather poor perovskite stability is usually attributed to electronic defects, electrode oxidation, the ionic nature of the perovskite, or chemical decomposition under moisture and oxygen. Understanding the underlying degradation mechanism is crucial to enable targeted improvements. "In our article, we demonstrate that an increasing concentration of defects in the cells is apparently not a decisive factor for degradation," says Martin Stolterfoht, former leader of the Heisenberg junior research group PotsdamPero at the University of Potsdam and now professor at the Chinese University of Hong Kong.
Recent satellite launch includes perovskite solar cells for performance testing
On March 21, a rocket nicknamed “Cargo Dragon” was launched from Florida, marking the beginning of NASA’s 30th commercial resupply mission to the International Space Station. The 30 tons of cargo aboard included a special payload — the first CubeSat satellite built by a University of Nebraska–Lincoln team and launched into space.
As part of its CubeSat program, NASA in 2021 chose the Nebraska team to include its satellite experiment included as auxiliary payload aboard a future mission to the space station. A few months ago, NASA informed the Nebraska team that their CubeSat would be aboard a SpaceX Falcon 9 rocket scheduled for an early March launch. Big Red Sat-1 was one of four projects from U.S. universities selected for the program.
Researchers develop new technique for flexible perovskite solar cells with improved efficiency
High power conversion efficiency (PCE) flexible perovskite solar cells (FPSCs) are highly desired power sources for applications like aerospace and flexible electronics. However, their PCEs still lag far behind their rigid counterparts. To address this issue, researchers from Tsinghua University and National Center for Nanoscience and Technology developed a new fabrication technique that increases the efficiency of FPSCs, paving the way for use of the technology on a much larger scale. The scientists reported a high PCE flexible perovskite solar cell by controllable growth of a SnO2 electron transport layer through constant pH chemical bath deposition (CBD).
The team developed a new chemical bath deposition (CBD) method of depositing tin oxide (SnO2) on a flexible substrate without requiring a strong acid, which many flexible substrates are sensitive to. The new technique allowed the researchers more control over tin oxide growth on the flexible substrate. Tin oxide serves as an electron transport layer in the FPSC, which is critical for power conversion efficiency.
Researchers design perovskite solar cell with 31.31% efficiency using unique perovskite material
Researchers from Bangladesh, Saudi Arabia, Pakistan, USA, Nepal and China have explored the fascinating structural, optical, and electronic features of calcium nitrogen iodide (Ca3NI3) as an attractive material for developing absorbers for efficient and reasonably priced solar cells.
Potential applications as an absorber layer in heterostructure solar cells for the perovskite material Ca3NI3 have been thoroughly studied theoretically. For the Ca3NI3 absorber-based cell structure with CdS as the ETL layer, the best PV values were discovered using the SCAPS-1D simulator. Working temperatures, interface densities of active materials, doping densities, and layer thicknesses were all carefully considered while analyzing the PV performance.
Maxwell launches HJT perovskite tandem cell equipment facility
It was reported that solar production equipment maker Maxwell recently held the groundbreaking ceremony for its HJT perovskite tandem cell equipment facility, located in Wujiang District, Suzhou, Jiangsu Province.
The company is investing about RMB 5.4 billion ($750.16 million) in the facility focused on research and manufacturing of next-generation HJT perovskite tandem cells. The construction is scheduled to be completed within 2 years.
Researchers use DMAFo additive to make better perovskite solar cells
Researchers from the University of Science and Technology of China, Hefei National Research Center for Physical Sciences at the Microscale, Chinese Academy of Sciences and University of Colorado (CU Boulder) have reported an innovative method to manufacture perovskite solar cells.
A major challenge in commercializing perovskite solar cells at a commercial scale is the process of coating the semiconductor onto the glass plates which are the building blocks of panels. Currently, the coating process has to take place in a small box filled with non-reactive gas, such as nitrogen, to prevent the perovskites from reacting with oxygen, which decreases their performance. “This is fine at the research stage. But when you start coating large pieces of glass, it gets harder and harder to do this in a nitrogen filled box,” said Michael McGehee, a professor in the Department of Chemical and Biological Engineering and fellow with CU Boulder’s Renewable & Sustainable Energy Institute.
Researchers report annealing-free flexible perovskite quantum dot solar cells that use UV-sintered Ga-doped SnO2 electron transport layers
Researchers from Hanyang University, Nankai University and Kookmin University have developed a room-temperature-processed tin oxide (SnO2) ETL preparation method for flexible perovskite quantum dots (PQD) solar cells. Low-temperature ETL deposition methods are especially desirable for fabricating flexible solar cells on polymer substrates.
The process involves synthesizing highly crystalline SnO2 nanocrystals stabilized with organic ligands, spin-coating their dispersion, followed by UV irradiation. The energy level of SnO2 is controlled by doping gallium ions to reduce the energy level mismatch with the PQD.
SoFab Inks unveils new high-performance, low-cost ETL for perovskite solar cells
SoFab Inks, a supplier of specialty materials used in perovskite manufacturing, has introduced a new high-performance, low-cost electron transport layer (ETL), designed to enhance the durability and manufacturability of perovskite solar cells.
SoFab's new product is a functionalized nanoparticle ink that can be tuned with a dopant. This innovative ETL offers a range of benefits, including low-temperature solution processability, excellent photostability, high chemical stability, robust electron conductivity, good optical transparency, wide band gap, and favorable alignment with perovskites.
SoFab's team has reported a PCE of over 20% in an inverted perovskite solar cell architecture made with a plastic substrate. The Company anticipates that its patented ETL could serve as a viable substitute for the commonly employed C60, an expensive organic ETL notorious for delamination issues and Voc pinning.
Pagination
- Previous page
- Page 22
- Next page