Researchers achieve 3D printing of luminescent perovskite quantum dot–polymer architectures

Researchers from Ulsan National Institute of Science and Technology (UNIST), Korea Electrotechnology Research Institute (KERI) and Sungkyunkwan University (SKKU) recently developed a straightforward and effective method for producing 3D architectures of perovskite quantum dot (PQD)-encapsulated high-performance composites (PQD-HPCs) through direct-ink writing (DIW). 

Schematic of the direct-ink writing (DIW) approach of luminescent PQD–polymer architectures. Image from Advanced Functional Materials

Led by Professor Im Doo Jung from the Department of Mechanical Engineering at UNIST, the recent study introduced a cutting-edge one-stop perovskite quantum dot (PQD) additive manufacturing technology. This approach eliminates the need for heat treatment, allowing for the creation of complex 3D shapes with exceptional precision, including iconic landmarks like the Eiffel Tower.

Read the full story Posted: May 04,2024

Solaires and XLYNX team up to ‘unlock full potential of recycled light’

Solaires Enterprises and XLYNX Materials recently announced a collaboration which will focus on building efficient and stable perovskite solar cells to “unlock the full potential of recycled light”. 

The partnership between the two Canada-based companies aims to help engineer the future of solar energy, according to Dr. Sahar Sam, a cofounder of Solaires Enterprises. “Through collaboration with XLYNX Materials, we are one step closer to making solar energy even more sustainable, cost-effective, and accessible,” Sam stated. 

Read the full story Posted: May 03,2024

Toray Engineering to Ship Large Size Slot-die Coater for GW Perovskite Production Line

Toray Engineering says that it will ship large size slot-die coaters for an upcoming Gigawatt scale (GW) perovskite production line. The first shipment is scheduled in the second quarter of 2024.

This upcoming production line will be the world’s largest perovskite PV production line, with a glass size of over 2 meters in size. Toray plans to ship multiple large-scale (over 2 meter) slot-die coaters in 2024 for perovskite production.

Toray Engineering’s slot-die coaters have already been used worldwide in perovskite coating processes in several installations. The company reports that market and customer demand is on the rise, and several companies are planning to construct large-area perovskite production lines, with glasses over 2.4 meters in size. Toray Engineering has produced and sold over 800 large-size slot-die coater systems, and is the only company that has successfully produced and shipped large slot-die coaters.

Read the full story Posted: May 02,2024

Researchers use thiocyanate ions to boost the efficiency of perovskite/organic solar cells

Researchers from Soochow University, Hunan University and Friedrich-Alexander University Erlangen-Nürnberg have incorporated pseudo-halogen thiocyanate (SCN) ions in iodide/bromide mixed halide perovskites and showed that they enhance crystallization and reduce grain boundaries. 

While perovskite/organic tandem solar cells could theoretically achieve high efficiency and stability, their performance is hindered by a process known as phase segregation, which degrades the performance of wide-bandgap perovskite cells and adversely affects recombination processes at the tandem solar cells' interconnecting layer. The team devised a strategy to suppress phase segregation in wide-bandgap perovskites, thus boosting the performance and stability of perovskite/organic tandem cells. This strategy entails the use of a pseudo-triple-halide alloy incorporated in mixed halide perovskites based on iodine and bromine.

Read the full story Posted: May 02,2024

Researchers use novel additive to develop efficient tin halide perovskite solar cell

An international group of researchers, led by the Chungbuk National University in South Korea, has reported a tin halide perovskite (Sn-HP) solar cell that uses an additive known as 4-Phenylthiosemicarbazide (4PTSC) to reduce imperfections in the perovskite layer.

Using wide bandgap tin halide perovskites (Sn-HP) could pose an eco-friendly option for multi-junction Sn-HP photovoltaics, but rapid crystallization often results in poor film morphology and substantial defect states, hampering device efficiency. The team's work aims to introduce a novel multifunctional additive to tackle these issues.

Read the full story Posted: May 01,2024