Microquanta moves towards scale-up with SMIT Thermal Solutions' equipment for GW perovskite factory

Microquanta, a perovskite solar cell manufacturer based in Hangzhou, China, has announced its latest procurement of state-of-the-art vacuum deposition equipment from SMIT Thermal Solutions. This significant acquisition, surpassing 9 million Euros in value, marks a pivotal moment in Microquanta's journey towards launching the world's first gigawatt-scale (GW) perovskite solar cell factory in Hangzhou.

This collaboration with SMIT Thermal Solutions is not a first for Microquanta; the Dutch-based company has been a partner since 2018, starting with a pilot setup, followed by the delivery of a mass production system for Microquanta's 100MW factory. The latest deal involves cutting-edge next-generation mass production systems, tailored to meet the ambitious scale and efficiency goals of Microquanta's GW factory.

Read the full story Posted: May 26,2024

Researchers develop strategy based on SAMs to design inverted PSC with 24.38% efficiency

Researchers from China's Hangzhou Dianzi University and Jiaxing University have developed a strategy for optimizing the bottom region of perovskite solar cells and designed an inverted perovskite solar cell using the new strategy. The proposed cell was treated with two molecules known as 2-mercaptoimidazole and 2-mercaptobenzimidazole and was based on a hole transport layer relying on a self-assembled monolayer.

“The HTLs prepared with SAM materials not only have negligible parasitic absorption, low material consumption, and stable adhesion but also exhibit inherent passivation of defects on the bottom of perovskites,” the research team explained.

Read the full story Posted: May 25,2024

Researchers use antimony selenide as a bottom cell material for efficient perovskite/Sb2Se3 tandem solar cells

Researchers from the University of Science and Technology of China and Hefei University of Technology have developed a proof-of-concept tandem solar cell tandem solar cell by using antimony selenide (Sb2Se3) for the bottom cell and a wide-bandgap organic-inorganic hybrid perovskite material for the top cell. The device reached a power conversion efficiency of more than 20%, which demonstrates that antimony selenide has a high potential for bottom-cell applications.

Antimony selenide (Sb2Se3) possesses a band gap of 1.05–1.2 eV and has been widely applied in single-junction solar cells. Based on its band gap, Sb2Se3 can also be used as the bottom cell absorber material in tandem solar cells. Sb2Se3-based solar cells also exhibit excellent stability with nontoxic compositional elements. In this recent work, the team demonstrated a perovskite/antimony selenide four-terminal tandem solar cell with a specially designed and fabricated transparent electrode for an optimized spectral response.

Read the full story Posted: May 24,2024

Japan to launch public-private group to promote use of perovskite solar cells

Last week, it was reported that the Japanese government estimates the need for electricity output to rise 35% to 50% by 2050 due to growing demand from semiconductor plants and data centers backing artificial intelligence (AI).  Now, Japan's industry ministry has said that it will launch a public-private group this month with the aim of commercializing perovskite solar cells, which are thin, light and bendable. The consortium will see 150 public and private entities, including local governments, working together to accelerate the adoption of flexible perovskite solar panels. 

Perovskite solar cells, which can be installed flexibly in various places, such as on walls, are believed to hold the key to Japan's push for renewable energy. As the first step, the consortium will set a target for perovskite cell capacity by 2040. Current projections point to 38.8 GW, with the possibility of exceeding the capacity of conventional solar panels (70 GW) in the next decade, reaching 84.2 GW in 2050.

Read the full story Posted: May 23,2024

KRICT and UniTest develop large-area perovskite solar cell with 20.6% efficiency

The Korea Research Institute of Chemical Technology (KRICT) and Korean semiconductor equipment maker UniTest have announced the joint development of a large-area perovskite solar cell with 20.6% efficiency, which they define as a record-breaking achievement.

They reportedly received the world’s highest efficiency certification from Fraunhofer and will be listed on the U.S. National Renewable Energy Laboratory (NREL)’s solar cell efficiency chart.

Read the full story Posted: May 22,2024

Researchers report cadmium-doped perovskite solar cell with 22.7% efficiency

Researchers from the University of Victoria, University of British Columbia and Henan University recently used a cadmium iodide doping technique to stabilize the blade coating process in the manufacturing of solar cells based on formamidinium lead iodide (FAPbI3) perovskite. The team built a cell showing a considerable increase in efficiency compared to an identical device without cadmium doping.

FAPbI3 is one of the most promising perovskite materials for solar cell applications, as it offers a narrow energy bandgap and remarkable stability. However, there are still challenges to overcome considering the FAPbI3 polymorphism issue and its hypersensitivity to fabrication conditions. The scientists hypothesized that introducing a homovalent Pb-site additive would be beneficial, and one such alternative is cadmium.

Read the full story Posted: May 22,2024

Researchers develop new technique to grow single-crystal perovskite hydrides

Researchers from Japan's Shibaura Institute of Technology and National Institute for Materials Science have developed a method to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements.

Perovskite hydrides, whose molecular structure contains hydrogen anions (H−), attract special attention because of their hydrogen-derived properties and many believe they can be useful for hydrogen storage technologies such as fuel cells and next-generation batteries, as well as energy-saving superconducting cables. However, measuring their intrinsic hydride-ion conductivity is difficult. In their recent study, the researchers addressed this issue using a novel laser deposition technique in an H-radical atmosphere. Using this approach, they grew thin-film single crystals of two different perovskite hydrides and characterized their hydride-ion conductivity. 

Read the full story Posted: May 21,2024

Researchers design efficient 4T perovskite-cadmium tandem solar cells

Researchers at the University of Toledo have designed a four-terminal (4T) tandem solar cell with a top device that uses a perovskite absorber with a tunable wide-bandgap and a bottom cell based on a commercially established narrow-bandgap absorber technology made of cadmium telluride (CdTe).

Perovskite-cadmium telluride tandem solar cells are relatively unexplored compared to other tandems. While the efficiency potential of CdTe-based tandems is lower than CIGS-based tandems due to the higher bandgap of the CdTe bottom cell, the broader commercial success of CdTe solar cells makes them interesting to investigate for thin-film tandem applications.

Read the full story Posted: May 20,2024

GCL optoelectronic launches perovskite project

It was reported that about a week ago, Kunshan GCL Optoelectronic Material launched the first phase of a photovoltaic energy storage equipment production project was launched, backed by a total investment of Yuan 570 million (over USD$80 million).

The project is undertaken by Kunshan High-Tech Group, which is responsible for the customized construction of a high standard factory area for the 1 GW production project of perovskite photovoltaic modules for enterprises. 

Read the full story Posted: May 20,2024

US DOE invests $71 million to advance American solar manufacturing

As part of the Investing in America agenda, the U.S. Department of Energy (DOE) recently announced a $71 million investment in research, development, and demonstration projects to grow the network of domestic manufacturers across the U.S. solar energy supply chain. 

The selected projects will address gaps in the domestic solar manufacturing capacity for supply chain including equipment, silicon ingots and wafers, and both silicon and thin-film solar cell manufacturing. The projects will also open new markets for solar technologies such as dual-use photovoltaic (PV) applications, including building-integrated PV and agrivoltaics. 

Read the full story Posted: May 19,2024