Researchers use perovskites to develop “multielement ink” – a “high-entropy” semiconductor that can be processed at low-temperature or room temperature

Researchers from Lawrence Berkeley National Laboratory (Berkeley Lab) and UC Berkeley have developed room-temperature-solution (20 °C) and low-temperature-solution (80 °C) synthesis procedures for a new class of metal halide perovskite high-entropy semiconductor (HES) single crystals. The “multielement ink” could enable cost-effective and energy-efficient semiconductor manufacturing and accelerate the sustainable production of next-gen microelectronics, photovoltaics, solid state lighting, and display devices.

“The traditional way of making semiconductor devices is energy-intensive and one of the major sources of carbon emissions,” said Peidong Yang, the senior author on the study, a faculty senior scientist in Berkeley Lab’s Materials Sciences Division and professor of chemistry and materials science and engineering at UC Berkeley. “Our new method of making semiconductors could pave the way for a more sustainable semiconductor industry.”

Read the full story Posted: Oct 02,2023

Perovskite material to promote superior detectors for X-rays at large synchrotron facilities

A team of scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory and their colleagues have demonstrated exceptional performance of a new material for detecting high energy X-ray scattering patterns. With excellent endurance under ultra-high X-ray flux and relatively low cost, the detector material may find wide application in synchrotron-based X-ray research.

Recent advancements in X-ray technology enable brighter, more intense beams and imaging of increasingly intricate systems in real-world conditions. To support these advancements, scientists are working to develop X-ray detector materials that can withstand bright, high-energy X-rays — especially those from large X-ray synchrotrons — while maintaining sensitivity and cost-effectiveness.

Read the full story Posted: Oct 01,2023