Researchers gain insights from close examination of the two-step deposition of perovskites in mesoporous-carbon-based perovskite solar cells

Researchers from The Hebrew University of Jerusalem and Ben-Gurion University of the Negev in Israel, have studied the two-step deposition of perovskites in mesoporous-carbon-based perovskite solar cells. The team studied the effect of the different deposition parameters on the PV performance and stability.

Schematic illustration of the two-step deposition process imageb) Schematic illustration of the two-step deposition process. The first stage includes dropping of the PbI2 þ PbBr2 solution, the second step includes dipping into the cation solution of FAI þ MABr. Image from article

The influence of the dipping time on the photovoltaic parameters was investigated using charge extraction and intensity-modulated photovoltage spectroscopy (IMVS) measurements. By modifying the perovskite precursors' concentration and the dipping time, a PCE of 15% was achieved. The dipping time in the perovskite deposition of this solar cell structure is critical due to its thickness and mesoporous structure.

Read the full story Posted: Mar 17,2021

Researchers use coherent spectroscopy to gain insights into perovskite quantum dots

Scientists at the Chemistry and Physics Institutes of the University of Campinas (UNICAMP) in the state of São Paulo, Brazil, in collaboration with scientists at the University of Michigan in the United States, have provides insights into the fundamental physics of perovskite quantum dots.

"We used coherent spectroscopy, which enabled us to analyze separately the behavior of the electrons in each nanomaterial in an ensemble of tens of billions of nanomaterials. The study is groundbreaking insofar as it combines a relatively new class of nanomaterials - perovskite - with an entirely novel detection technique," Lázaro Padilha Junior, principal investigator for the project on the Brazilian side, explained.

Read the full story Posted: Mar 16,2021

Researchers design flexible perovskite quantum dot solar cell with 15.1% efficiency

An international research team has developed a flexible quantum dot solar cell based on all-inorganic cesium-lead iodide (CsPbI3) perovskite.

The preparation and properties of CsPbI3 QD and CsPbI3 QD/PCBM films image

The researchers built the cell by integrating quantum dots (QDs) with high surface areas into a thin hybrid interfacial architecture (HIA) and by adding phenyl-C61-butyric acid methyl ester (PCBM), which is known as one of the best-performing electron acceptors commonly used in organic photovoltaic devices, into the CsPbI3 quantum dot layer.

Read the full story Posted: Mar 16,2021

Philippines' Maya-2 cube satellite launched into space - assisted by perovskite solar cells

Maya -2, the Philippines second cube satellite, was recently released to space from the International Space Station. Maya-2, designed and built by Filipino scholars, is a 1.3-kg satellite that can remotely collect data using a Store-and-Forward (S&F) mechanism and capture images and videos using an on-board camera.

2nd PH cube satellite Maya-2 released to space image

It is equipped with various advanced technologies, and perovskite solar cells are among these technologies.

Read the full story Posted: Mar 16,2021

Researchers provide insights into the atomic dynamics of halide perovskites

Researchers at Duke University have revealed the illusive molecular dynamics that provide halide perovskites with their desirable properties for solar energy and heat energy applications.

A key contributor to how these materials create and transport electricity reportedly stems from the way their atomic lattice twists and turns in a hinge-like fashion. The results could help materials scientists tailor the chemical recipes of these materials for a wide range of applications in an environmentally friendly way.

Read the full story Posted: Mar 16,2021

URE claims breakthrough in perovskite solar cell development

United Renewable Energy logo imageUnited Renewable Energy (URE), a U.S -based solar company, has announced that it has made a breakthrough in developing perovskite solar cells in collaboration with National Taiwan University, with energy conversion rates reaching as high as 26%, the company claims. It seems that these cells by URE are silicon/perovskite tandems.

URE said it has also developed N-type HJT and TOPCon solar cells. URE has reportedly begun shipments for HJT solar cells with a maximum energy conversion rate of 24.5% and will start small-volume production of TOPCon solar cells later in 2021.

Read the full story Posted: Mar 15,2021 - 1 comment

Researchers in-situ observe the ultrafast dynamics of trapped carriers in organic methyl ammonium lead halide perovskite thin films by ultrafast photocurrent spectroscopy

Researchers from Clemson University, Los Alamos National Laboratory, Huazhong University of Science and Technology, Jilin University, Kowloon Tong Hong Kong, the Israeli Technion and The University of Alabama have used laser spectroscopy in a photophysics experiment, and have broken new ground that could result in faster and cheaper energy to power electronics.

This novel approach, using solution-processed perovskites, could revolutionize a variety of everyday objects such as solar cells, LEDs, photodetectors for smart phones and computer chips. The goal of the research was to make materials that are more efficient, cheaper and easier to produce.

Read the full story Posted: Mar 14,2021

New perovskite LED emits a circularly polarized glow

A team of researchers from the National Renewable Energy Laboratory (NREL) and the University of Utah has developed a new type of LEDs that utilizes spintronics without needing a magnetic field, magnetic materials or cryogenic temperatures.

New spin-LED emits a circularly polarized glow image

'The companies that make LEDs or TV and computer displays don't want to deal with magnetic fields and magnetic materials. It's heavy and expensive to do it,' said Valy Vardeny, distinguished professor of physics and astronomy at the University of Utah. 'Here, chiral molecules are self-assembled into standing arrays, like soldiers, that actively spin polarize the injected electrons, which subsequently lead to circularly polarized light emission. With no magnetic field, expensive ferromagnets and with no need for extremely low temperatures. Those are no-nos for the industry.'

Read the full story Posted: Mar 14,2021

2D perovskites assist in creating high-efficiency LEDs

A joint research project by scientists from several China-based universities and laboratories has developed a 2D perovskite material for highly efficient LEDs.

Effects of MeS on phase distribution of the perovskite films imageEffects of MeS on phase distribution of perovskite films. The yellow path indicates the exciton energy transfer between nanosheets of different thicknesses. Credit: Nature

LEDs are ubiquitous, but current high-quality LEDs still need to be processed at high temperatures and require elaborate deposition technologies ' which makes their production cost expensive. Scientists have recently realized that metal halide perovskites can be extremely promising candidates for next generation LEDs. These perovskites can be processed into LEDs from solution at room temperature, thus largely reducing their production cost. However, the electro-luminescence performance of perovskites in LEDs still has room for improvements.

Read the full story Posted: Mar 11,2021

China's GCL raises over $15 million for 100 MW mass production line for perovskite solar cells

GCL Optoelectronics Technology Holdings, a subsidiary of China's Golden Concord Holdings Limited (GCL), recently closed a new financing round to enable it to expand its pilot perovskite solar module production to the mass production level.

According to various reports and news, the company has announced raising more than RMB 100 million (around $15.36 million) for a 100 MW mass production line for these modules.

Read the full story Posted: Mar 11,2021