Researchers design low-temperature method for creating better perovskite crystals

Osman M. Bakr's group in the KAUST Catalysis Facility has designed a low-temperature method that can be useful for making improved single crystal perovskites. The team said that novel perovskites have positive and negative ions in the same plan as the natural perovskite calcium titanate (CaTiO3). Lead halide perovskites, having lead ions as well as halide ions, such as chlorine and iodine in the perovskite mix, are drawing attention for optoelectronic applications.

The crystals have previously been created using high temperatures, however these have created many challenges. Now, the KAUST team has developed a new approach, enabling better crystals to form.

Read the full story Posted: Jun 02,2020

INL team develops new perovskite-based electrode material for simpler hydrogen generation and energy storage

A team of researchers from Idaho National Laboratory (INL) has developed a new electrode material that simplifies hydrogen generation and energy storage via protonic, ceramic electrochemical cells (PCECs).

The INL team developed a perovskite-based oxygen electrode that not only enables operation at considerably lower temperatures than current technologies require (400'600ºC), but also exhibits 'triple-conducting' behavior ' it can conduct electrons, oxygen ions and protons within a PCEC.

Read the full story Posted: Jun 01,2020