A change in chemical composition could boost stability of perovskite solar cells

Researchers from Colorado University in Boulder with the US Department of Energy's National Renewable Energy Laboratory (NREL) have shown how a change in chemical composition managed to boost the longevity and efficiency of a perovskite solar cell.

The new formula reportedly enabled the solar cell to resist a stability problem that has so far thwarted the commercialization of perovskites. The problem is known as light-induced phase-segregation, which occurs when the alloys that make up the solar cells break down under exposure to continuous light.

Read the full story Posted: Mar 08,2020

A new manufacturing method based on pre-nucleation yields efficient perovskite solar cells

Researchers from Peking University in China have developed a manufacturing method for perovskite solar cells using a pre-nucleation technique. Compared to traditional solvent dripping methods, the approach enables the creation of smaller crystallites in the perovskite films as uncontrolled crystallite growth affects the efficiency and durability of cells.

The technique aims to avoid the efficiency loss caused by humidity linked to the interactions of ambient water and oxygen with the perovskite precursors and substrate used during cell production.

Read the full story Posted: Mar 05,2020

Italian research team develops graphene-enhanced tandem perovskite cell with 26.3% efficiency

Italian researchers from two Italian institutions claim to have developed a two-terminal tandem perovskite-silicon solar cell with a conversion efficiency 26.3%.

The researchers added graphene to the titanium dioxide electron selective layer used in a perovskite solar cell to increase chemical stability. The two-terminal cell was made by stacking two sub-cells which were fabricated and optimized separately. The new device blends the advantages of thin-film perovskite and silicon-based heterojunction cells, according to its developers.

Read the full story Posted: Mar 03,2020