Perovskites combine with special organic molecules to advance spintronics and quantum computing
Scientists at the National Renewable Energy Laboratory and the University of Utah have shown that the transport of electrons with a particular spin state through a two-dimensional hybrid organic-inorganic perovskite can be manipulated by introducing special organic molecules in the multilayer structure. These are chiral, which means they prefer one electron helicity over the other. The new study may advance the field of spintronics'electronics that use the minuscule magnetic fields emanating from spinning electrons as well as the electric charges of the electrons themselves'for faster, smaller electronic devices that use less energy.
The Utah researchers worked together under the umbrella of the Center for Hybrid Organic Inorganic Semiconductors for Energy (CHOISE), an Energy Frontier Research Center funded by the U.S. Department of Energy's Office of Science, Basic Energy Sciences.